Modified Ryabinkin-Kohut-Staroverov =================================== The modified Ryabinkin-Kohut-Staroverov (mRKS) method is an accurate method that makes use of the one and two-electron reduced density matrices. The full method's description can be found: Ospadov, Egor, Ilya G. Ryabinkin, and Viktor N. Staroverov. "Improved method for generating exchange-correlation potentials from electronic wave functions." The Journal of chemical physics 146.8 (2017): 084103. The exchange-correlation potential is found self-consistently through the equation: .. math:: v_{xc}(\mathbf{r})=v_{xc}^{hole}(\mathbf{r}) + \bar{\epsilon}^{KS}(\mathbf{r}) - \bar{\epsilon}^{WF}(\mathbf{r}) + \frac{\tau^{WF}_P(\mathbf{r})}{n^{WF}(\mathbf{r})} - \frac{\tau^{KS}_P(\mathbf{r})}{n^{KS}(\mathbf{r})}. Where each of the components is defined as: .. math:: &v_{xc}^{hole}(\mathbf{r})=\int d\mathbf{r}_2 \frac{n_{xc}(\mathbf{r}, \mathbf{r}_2)}{|\mathbf{r}-\mathbf{r}_2|},\label{equ:mRKSComponent_a}\\ &\bar{\epsilon}^{KS}(\mathbf{r})=\frac{2}{n^{KS}(\mathbf{r})}\sum_{i=1}^{N/2}\epsilon_i|\psi_i(\mathbf{r})|^2,\label{equ:mRKSComponent_b}\\ &\bar{\epsilon}^{WF}(\mathbf{r})=\frac{2}{n^{WF}(\mathbf{r})}\sum_{k=1}^{M}\lambda_k|f_k(\mathbf{r})|^2,\label{equ:mRKSComponent_c}\\ &\tau^{WF}_P(\mathbf{r}) = \frac{2}{n^{WF}(\mathbf{r})}\sum_{k