{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "### H2 PDFT Inversion - Orbital Invert" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from CADMium import Pssolver, Psgrid, Partition, Inverter\n", "import CADMium" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Perform PDFT Calculation. \n", "\n", "But original code may have used \"WuYang\". \n", "Code should run as it is but for idential calculations increase to grid size to: [7,12,12]" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "a = 1.466/2\n", "#Nuclear charge for fragments A and B\n", "Za, Zb = 1,1\n", "#Set polarization 1-Unpolarized, 2-Polarized|\n", "pol = 2\n", "#Fragment a electrons [alpha, beta]\n", "Nmo_a = [[1,0]] #Number of molecular orbitals to calculate\n", "N_a = [[1,0]]\n", "#Ensemble mix\n", "nu_a = 1\n", "#Fragment b electrons\n", "Nmo_b = [[1,0]]\n", "N_b = [[1,0]]\n", "#Ensemble mix\n", "nu_b = 1\n", "\n", "#Molecular elctron configuration\n", "Nmo_m = [[1,1]]\n", "N_m = [[1,1]]\n", "\n", "#Set up grid\n", "NP = 7\n", "NM = [4,4]\n", "L = np.arccosh(12/a)\n", "loc = np.array(range(-4,5)) #Stencil outline\n", "\n", "grid = Psgrid(NP, NM, a, L, loc)\n", "grid.initialize()\n", "\n", "part = Partition(grid, Za, Zb, pol, Nmo_a, N_a, nu_a, Nmo_b, N_b, nu_b, { \"AB_SYM\" : True,\n", " \"ENS_SPIN_SYM\" : True, \n", " \"kinetic_part_type\" : \"inversion\",\n", " \"k_family\" : \"gga\",\n", " \"ke_func_id\" : 500,\n", " })\n", "\n", "#Setup inverter object\n", "mol_solver = Pssolver(grid, Nmo_m, N_m)\n", "part.inverter = Inverter(grid, mol_solver, { \"AB_SYM\" : True,\n", " \"ENS_SPIN_SYM\" : True, \n", " \"use_iterative\" : False,\n", " \"invert_type\" : \"orbitalinvert\",\n", " \"DISP\" : False, \n", " })\n", "\n", "# part.optPartition.isolated = True\n", "# part.scf({\"disp\" : True,\n", "# \"alpha\" : [0.6],\n", "# \"e_tol\" : 1e-12})\n", "\n", "# D0_frag_a = part.KSa.n.copy()\n", "# D0_frag_b = part.KSa.n.copy()\n", "\n", "\n", "part.optPartition.isolated = False\n", "\n", "part.scf({\"disp\" : False,\n", " \"alpha\" : [0.6],\n", " \"max_iter\" : 200,\n", " \"e_tol\" : 1e-9,\n", " \"iterative\" : False,\n", " \"continuing\" : False})\n", "\n", "#Store full densities under the presence of vp.\n", "Dvp_frag_a = part.KSa.n.copy()\n", "Dvp_frag_b = part.KSb.n.copy()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "Generate Figure 9. Parititon Potential. " ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqwAAAINCAYAAAD7gi17AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAABcSAAAXEgFnn9JSAACGkElEQVR4nO29ebwtV1mn/7xJ4Nx7k0ACBIwECMQYmkRkiDI4AA4MCkoERUUCKGo3Kjg3NA0Eh0akARGcmcS5jYzSgOLA1GAQEDT8ohAmgRAIgSQ39+SE5K7fH1V1b506NaxVtapqVe3v8/nszz67hlVrD6f2s99617vMOYcQQgghhBCpcszcHRBCCCGEEKINCasQQgghhEgaCasQQgghhEgaCasQQgghhEgaCasQQgghhEgaCasQQgghhEgaCasQQgghhEgaCasQQgghhEgaCasQQgghhEgaCasQQgghhEgaCasQQgghhEgaCasQQgghhEgaCasQQgghhEgaCasQQgghhEiaZITVzA6Y2cPN7KVm9kEzu9rMrjWzD5jZM8zshB5tnmRmv2FmnzCznfz+hWZ20ghPQQghhBBCjEAywgr8IPBq4IfJ+vUm4O3AHYFnAe8xs1v7NmZmtwQuAp4M3AC8BrgGeFLe1i1jdl4IIYQQIgQz22dmzzKz/zCz68zsM2b2MjM7rUdbqw7SpSSs1wO/A3y1c+4c59z3OeceDJwFvB+4M/AbAe29ADgTeBVwlnPuUc65c4AXAV8FPD9m54UQQgghfDGzfcDfAc8ATgBeC/wn8HjgfWZ2RkBbqw/SmXNu7j50Ymb3Af4fsAPczDl3fcf2XwF8GrgRuJ1z7vLSui2yD8QtgNuW1wkhhBBCTIGZ/RLwdOBdwAOdcwfz5T8LPA94m3Pufp5tvRJ4DFmQ7lHOuRvy5b8J/BTwSufcY+M/i+lYirAeAK7NH36lc+6yju0fD7wM+Dvn3LfVrH8pWerB451zr4jcXSGEEEKIRszsJsDngJOAezjn3l9Z/wHgrsC5zrn3drS1EUG6lFIC2rhTfv9l4EqP7b82v39fw/r3VbYTQgghhJiKbyST1UursppzYX7/MI+2HkLmc2+rCqlzbgd4PXBsvt1iOW7uDnjy5Pz+TfmL38Xt8/tPNaz/VGW7Vszs4oZVXw1sk/16EUIIITaZ2wGHnHNfMXdHzOx1gHcOaA8udc5914D9YwbWfNr6Yc+2kiV5YTWz7wB+hCy6+nTP3YoSWIca1l9b2a4vxxy7deyJJ51xi7sMbGdjcdjcXRiMW8yFCj/W8J4sCSP9tCxfjMNzdyEKa3pPpuRLl17JjTs3zt2NgjOAu9z6LreI3vDnPnQlwBlNwSzn3NkezcQMrEUN0qVK0sJqZv8F+GPAgF9wzn3Ad9f8vumsE/SN3PThM7OLTzrjFnd5wsU/EdKcKLHD1txdGMwh9s/dhWhcv4L3Y4ncFJ8LR+lzgO25uxCFrZW8H1PzkrN/iy986PPJXHE85S635IkXPyF6u7919kv4/Ie+MLSZmIG1qYJ0s5KssOY1yN4EnAw83zn3woDdr8nvj29YfyC/P9ize0KsConqvFzP1mqkVYhUuJFj+RInjdIuWUqATyS1iZiBtahBulRJUljN7FbA35KFr18O/HxgE5/M75sK755W2U6IjUWymgbF+7BkcT3E/tVEWcXyOTySsB7OhHUoMQNrGxGkS05YzexE4I1kEwW8CvhRF157q0gduEfD+mL5B8N7KMRRlpwOIFFNE0Vb50XpAOvhBo7lC8Svl39DHGGNGVjbiCBdUsKa1wt7LXAu8GbgB5xzfTK43wQcBr7JzG7tnPtc5RgPy9e/cXivhVgektW0WUO0VYi5OcyxfDHdCGvMwNpGBOmSEVYzOxb4M+ABwNuB7/GY0eongZ8EXu2ce2qx3Dl3mZn9GfBo4LfN7PuLWR+AXwdOAf7YOffZEZ6KEMkiUV0WS4y2Ki1ApMKNHDNSDmuUyjDvBK4iqzZw95parI/M7//ao62NCNIlI6xk4nle/vcVZKJZt93PO+euyP++FXAWcGrNdj8N3Bt4BHCJmf0zcDZwDnAp8DPRei5E4khUl4uirUL0Ixt0dfIo7Q7FOXe9mb0YeBrwYjN7oHPuWjgyNetdgXc4595T7LPpQbqUhLX8qTqvcSu4gExoW3HOXWFmXwc8C3h43ublwIuBZzrnfGbMEqKRpeSvSlbXgcRViDAOu2P50qGTRmk3Er8CfBtwX+DDZvZ24A7AvYAvAI+vbL/RQbpkhNU5dwGZjEbbxzn3ReBJ+U0kyBY7q6jFmiIS1XWyxDQBIebg8A3HcvCKk+I3fEMcYXXOXWdmDwCeCvwgWXDti8AfAk93znnXtN2EIF0ywiqEEMKP1KVVeawiCb4MfHwEzflyvKacc9vAM/Jb17YXsMFBOgmrECtE0dX1k7q0CjE7N+CRQNizXTE5ElYhepBy/qpkVQghgBsZR1j7FNsUg5GwCrEiJKubhaKscdGkAStDwroqJKxCCLFgUpVW5bGK2VFKwKqQsAoRSKrpAJscXZUcCSH2oAjrqpCwCrECNklWm34w1C3fFIlNNcoqxKzcAFw2UrticiSsQoikGRLR3iSJlbQKUeFGsvL7Y7QrJkfCKsTCWVN0dYp0i+ox1iSwqUmrUjXErCiHdVVIWMXsLGm2q9TyV5cuqym8npsUhRVio1AO66qQsAqxUJYmqynIqS9LjsKmFmUVYjacg+0x/nfdCG2KLiSsQohRWJKgdrE0gU1JWpUWIObjBuDykdoVUyNhFcKTlAQs9ehqSq/VGBTPL2URS0lahZgHCeuakLAKsTBSltW1i2oVRQ/Xg2a5WiM3AJ8bqV0xNRJWIRaEZDU9UpbWVKKsKb9GYs0owromJKxCeLCpMubLpr8+KacIpCKtQkzPjYwjrCoTMAcSViEWQorR1U0X1SqKJAqREo5xoqGqEjAHx8zdASFEN5LV5XCI/cm9Nil8flJ7TYQQy0LCKkQH+qLdi16TblJ7jVKQViGE6IuEdSDHcHjuLqwCjdBtJiXRSDF6mDKpvVZzf5ZSez2EEMtBwhqB/cpZEyMxt2CUkWz0Q5IvNgUFcMSYSFgjIWldJ3OKhmR1XaTyGqb0uRLrYD/b+g4UoyNhjYj+YcXaUHQwLqm8lnNKayqvgYiDvvfEVEhYI6N/3vWw6dFVicU4pPIjIIXPWCooh74f+r4TUyJhHQH9E4shzC0SqQjV2tFrLJaMvufE1EhYR0I5PaIPKciqmI65fxzM9XnT52zZ6LtNzIGEdWT0j71MNu0LdW5x2nTmfP3n/pEkloW+08RcSFgnQP/gwoc5xEGimhZ6L0TK6LtMzImEdSL0j97NJg98mFpW1ySq2xw4clsDc7w3c/1YEstAKW4iBSSsE6J/+GWgL9J0KctpnaTWrV+qyOpzKFJA31vpYmbHm9ljzOxFZnaRme2YmTOzpwxo8xZm9lwz+0je3ufM7EIz+9qYfe/DcXN3YNPYzzbb+iISM7IEEYotmXXt7edQ1GOMwSH2c2AiYbieLW66wVc5xF4kq8lzJvDKWI2Z2anAO4A7AZcB/xf4SuB7gIeZ2Xc6594S63ihSFhnoDgJSFwFTHs5NkVZnSsCuhSJnVJap2bNz23pSFYXwTXAS4GLgPcAjwCeNqC93yeT1TcC3+ucuxbAzB4B/CXwp2Z2J+fcwUG97omEdUYUbRVTkoKspn55fikSK8SYSFaXgXPuUuAJxWMz++6+bZnZ7YCHAjcA/62Q1fw4f2VmfwU8Evhh4Dd7d3oAymGdGZ0YxBTMKatLzyVNIR92qvdvE0tcbfJgzzr0nbSx3CO//5hz7hM16/8xv+8txUORsCaAThCbyxSCMJesLllS21i7tIrNRJUANp7j8/svNqy/Mr+fbfCVhDURdKIQYzCnrK6ZuWR8ivdzE6Osm46+fwTw+fz+Dg3ri+W3NLMTJujPHpTDmhDKaZ2fKQVvjWKwdlGtss2ByXNcNVBJxESy2pszzOziuhXOubOn7kwE/gm4DriNmT3YOfemYoWZHQOcX9r2RGDygVcS1sTYdGndYoedFYrcHEwdXd00WS0onveU4jq2tKrE1WYgWZ0XM7sQOCdwt/OdcxfF7otz7moz+y3g54A/NLMfB/4eOBX4VeAs4DDZlfnDsY/vg4Q1QTZdWjeBsaOrU8rqpopqlamjrYq0iiFIVgdzaYRI6ulkIhjCmCfc/wGcBjwKeHVp+Q1kIvv8/PGXRuxDIxLWRJG0ir5IVudjjmirEKFIVtPAOXfu3H0o45y7Hvh+M3sR8BDg1sBngP8DOMCAjzjnZrn8kpSwmtk9gW8Hvh64F9kMCzvOuX092vo4zcnDAP/FOXdJn35OhaRVhDKVrEpU25kq2jpmlHUT0gI2saSVZFV04Zx7J/DO8jIz+6n8z3+cvEM5SQkr8HTi1/j6w4blV0U+zihIWtfHWOkAU8iqRNWfqaKtSg0QQoyJmd0U+In84R/M1Y/UhPVdwAfIphh7D/DZoQ065x43tI25kbSKLiSr6TJFtHUsaZ0iyirhng5FVwWAmRVXl7/VOffp0vLbA9vOuc+Xlp1INv3rWcArxhjw5UtSwuqce075sZnN1ZXkkLSugyWWspKoDmeKaKvET7QhWV0nZvZqspH8kA2YAniimT08//sy59x5ld2KgV43qSz/FuAPzOyfgU+SDfD6JuDmwJuB/xax68EkJaxCgEpbhTJmdFWyGpexxXUMad2EXNa1I1ldNXdn73id2+U3gLppVpt4L3AhcG/gbsAO8K/Ay4GXO+fcoJ4OZPXCama/AJxB9sJfDLy6HO5eEoqyLpsxoqtjyapEdVzmmHBAbCaS1XXjnDu9xz61l6+dc/8K/MDQPo3F6oUV+PXK4xeY2ZOccy/1baBpNgsyEZ4USasokKzSGIlfwujvsaKtirKKAsmqWBPHzN2BEXkd8D1kofIDZLNJPB/YAl5Syu9YHDoJjcOYl9ZjR1fH6Os2B5KW1R229tx8t02ZMV7zqWc5WyJL+FEzBH1PiLWx2girc+5JlUUXAz9nZv8O/B7wHOA1nm3VzmaRR17vMqCbvVGkdXMZS1ZTIrZkph6JHSNFIHakVVFWIcScrDnC2sRLgM8BX21md5y7M0PQL+hlsMTKAFNRFzWdMiI69/HLKNIqYqHvBrFGNk5YnXOHgUvzh6e2bbsEdGLaLJYcXU1FDH2Yq5+pS6t+fKWPvhPEWtk4Yc05Ob8/OGsvxOqJ+QW/VFlNXU59WPpzSD3Smnr/loJkVayZjRNWMzubrGjuIeCSjs0XwRpPUqnkFqbCEmV16ZJXxxTPKbV8YrEM1vg9IESZRQurmf2kmV1iZs+uLH+Qmd2zZvu7An8JGPAS59z1E3V1dHSyGsamRXimkNU1M7a4piytSgtID53/xSaQVJUAM/tO4OmVxTc1s3eXHv+yc+4N+d+3IouWVnNR7wM808w+QZav+nngjsA9yJ7zW4GnRu7+7KhyQFps4hf72kW1SvF8x7giELtygKZuXSeSVbEpJCWswCnAvSrLrLLsFI923kw2LdnXAV9LNg/u1cA7gD8hm2LsxsG9TRBJ6/qIHf0dI3q3aaJaZSxxTXVGrKWXuFLKkRDLIylhdc69AnhFwPYXABfULH8X8K5I3Vocktb5STW6GltWN11Uq+ywlbS0Ksq6LhRdFZvEonNYRTM6ka2DmNHVmLK6xgFVsRjjtUkxp3UJs7etGZ3jxaaRVIRViDWQYnQ1lvCkJqlNkpNCFDF2mkCsSKuirMtHsio2EQnrill6asAWO5MIUqqRnVj9WoOshr4WddvPJWkxxTW1nNal57IuEcmq2FQkrCtn6dK6NFKLrsaQ1alFdawfEHNHY2OJa2rSKqZDsio2GQnrBiBp3UyGyurYoppKZHvqaGwMcR0qrUoLWB6SVbHpaNDVhqCT3bIYKnOpyuoh9h+5pcwU/Rz6GqcyECu1qwpdqKSVEMtEwrpBSFo3gxRldQmS2sSYfZ9TWlN8P1LsUwro3C2EhFWIaMSKNA350k5VVtfAWOK6lkirGAfJqhAZEtYNQye/3aQmU2uS1SVHVdtI8Tn1fe9TfC7iKDpfC3EUCesGopPg+khRVtdMbBmP8fpLWoUQa0bCKpJmkwZI9BWHlGR1rVHVJmI+3zmlVaSHAgtC7EbCuqHoZLgOUpHVTRPVKilJax+G9n9plQJSR+dnIfYiYd1gdFJMhyXL3pL7HpNY0r7pg7D0eRJC1KGJA4SIwBwRprmjq3OKhe/rPce0oTGK8u+wNXk6jCYTSAMFEoSoR8K64WzyLFipRHLm6McQWZ26v0N+DNTtO4XEFq/REAEcIq2avlUIsTYkrELMyBwDrVKW1Ski1VNK7FBxnTrSuvYoa+qDOBVdFaIZCavY6CjrptFXVscQ1ZQG6owtsXOIYN8oa9++Xs/WLCkYa0GyKkQ7GnQlAJ0sh9BXvKaOrqYgq9ezdeSWOrH72XdQ1lyVA4QQIiUkrEJsAHPL6lIktY4xxDWUvu+fJhNYBgoYiD6Y2V3N7MVm9m4z+4yZ7ZjZVWb2LjP7STMLvopuZieb2XPM7BIz285vF5vZr5jZzcZ4Hr4oJUAcQakB0zFldHVOWV2qpNZRPJe5LnvPUTkgFKUFhCNZFQP4ZuAngE8AHwI+D5wCfANwb+A8M3uwc+7LPo2Z2SnAu4AzgM8AbyLzxPsATwMeYWb3cc59KfLz8EIRVrELnTzDWJOQlYlRSH6tr02M59b39e3z40NRViFWy/8FznDOne6c+zbn3A84574NOB34N+BbgB8JaO+pZLL6auBOzrnznHMPA+4IvAO4M/AzMZ9ACBJWISYm9ejq0mY9KnJDp55ta6i4TimtIk0UIBBDcM591Dn30ZrllwO/lj/8loAmvzm/f45z7silEufcNcDz8odf16evMVBKgNiDUgPWwdSyOrao+vatbrsxR+gPSRXoOyI/ND1g6ooBohvJqhiZG/P76wP28TmpXNmjL1FQhFXUktLJNPW8vSkIja5OKatjjaaPGTkdo80qfV+HtV16X2sqiBBLwcxOBn4uf/jGgF3/Nr//72Z25B/ZzE4Efj5/+IfDe9gPRViF6EmqcjKVrM6VxxmTpj4MiSr2ibj2iWROFWUV8UkpICB6c4aZXVy3wjl39pQdMbMzyQZFHQPcBrgvcALwe8CfBjT1v4EHAOcBHzWzfyLzxPuSRWx/xDn3ty37j4qEVTSi1IA0GDKrlQ+h4rgGUe0ixtSqoeLa55hLqBwghBid2wCPrSx7MfA055zzbcQ5d9DMHgz8AfBoMnEteB3w3qEdHYKEVYgVERpdDZHHTRDVKnOJ61h5o32irH36o/JWzSi6uhouHRpJNbMLgXMCdzvfOXdReYFz7h1Zc3YscHsy0Xwm8CAze6Bz7uOe/bk98AbgVOB8srJWAA8BXgC8w8y+3Tn37sA+R0HCKlpRlLWeqdIBQqKrktXxiCWuY0iroqx+pPAaSVZFhdOBswL3afxScM7dCHwMeL6ZfQx4FfAi4GGebf8hmUA/3Dn32tLyV5rZQeCvgOeTpQhMjoRVdCJpXR9TyerSRbXKUHFNQVqVyypEGjjnzh2x+dcAB4GHmNlNnXOt1QLM7HbA/ckqBby+ZpPX5uvubWb7nHPXxe1uN6oSIESijBVdnUJWp6qJWozML9+mYKryX6kI/xyD8taGoqtiSvLc1SuBY4GTPXY5Lb+/1jl3uKa9G4FDgAEnRepmEBJW4cXcJ9sULuelSkqyOqao+spp3XZjyNOQ5zqGtIZ8DsYeyCd2M/f5U2weZnYn4HbA1cAVHrt8Nr+/hZndsaa9M8jE91rP9qIjYRXe6KSbMUX+amyhCJWr0OcYU1THEs6xJHaKaPIY0iqEWDZm9ou5mFaXn0VWzsqAV+bR0fL6S/LbbYtlzrmPAR/MH/6emd28tP1JZCWyAF7jnLsh7jPxQzmsQiRG7FSAsctWpTw7Vt/j9521CvzzW0NH0seuHrBJuaxzXqHRD30xIk8Enm1mHwA+QiaodwDuSRaQfBvw1Jr9ioFeN6ks/zHgLcC3Ax/J67AC3Bu4JfBx4Bcj9j8IRVhFEDr5psPcsjr0kvjcstrG0IFmvq/LGD8OxkoNmDKPNZXc3aHofClG5mnAnwPHAw8CvpusrNXfAo8DHuCcO+jbmHPun4C7kdVhvRr4NuBbgMuBXwPu6Zz7TLzuh6EIqwhmrqoBW+zMfslzbMmaM7fQ97ktOaIaQp8Zq8r4RkTHiLSq1JUQ68c59yfAn/TYz1rWXUoWaU0ORViFGJkxokWxo6uS1WaGRIPHirTGRAOwxkHRVSHiImEVIhHmEoexZTX1y/++pCStsVMD1owizUKsA6UEiF5oMoH5iBldHVNWx5bUQy2Cf2CkwUR90wTGSg/owjc1wHcA1pjTxq4JRVeFiI+EVYgR8RU93+jqJspqm5j22SeGzPYR19jSKnkUQmwSSaUEmNk9zewpZvYqM/u0mTkz6z39l5mdZGa/YWafMLOd/P6FeU0xMZA5ogixLu+tZRRyX8aS1b6X/w9xoPEWm5jHGasEWMz3Z+7UgDWkgwgh5ie1COvTycoyDMbMbgm8CzgT+CjZvLpnA08CvsPM7u2c+0KMYwkxBbGiq2PIal9JTYlyf0KisKHR1rnSA7pQWkAclA4gxDgkFWElE8xfAh4GfMXAtl5AJquvAs5yzj3KOXcO8CLgq4DnD2xfoJNzGzHTAWJFyWLLap+I6liR05j06WPIaxEz0rqEKOtcaMCVEOshqQirc+455cdmjaXCWjGzrwAeDXwZeGJlGrFfAL4feLSZ/aJz7vKe3RUiKbrEJaZMrSGi6kPR5zEirlNHWlWbdXz0A16I8UgtwhqLh5BPS1YVUufcDvB64Nh8OzEQnaTHZYwZrYa0M3dEdfvw/qBbDPpGXLvbjRNpjfX++w7+2/QccCHE9CQVYY3I1+b372tY/z7gh0vbCdFJ7DqZ0C0IU6YCxJbVoZIaSzab2tl/TPgPrdCIq090dMqcUEVZx0M/3IUYl7UK6+3z+081rP9UZTsxENVlnY8YqQBxB2uFiWosMQ2l7ri+EhsirrGktasdX/HtklYNvhJCpMhahfWE/L7prHttZbtWzOzihlVnhHRKxGGLnaQHkSztcmksWV2KqLZR9Cm2uPrktU4prSIuiq4KMT5rzWEtRmu5jvVCzEaMdICh0dUYshqa3xkzt3QsQvvo+xpMlYu6BvRaCCHKrDXCek1+f3zD+uKb5aBPY865s+uW55HXu4R1bb0oLWBZDJXVFCKqO9ft7d/Wvng5mmNEXH2ipFkb9ceMEWWdOi1g6pqyU6LoqhDTsFZh/WR+f1rD+tMq2wkRhSkHWw2Jrg6PzIZFVGNQJ6ch2w0R2T7iOkRaszaaZXDNAiiEEHWsVVg/kN/fo2F9sfyDE/Rlo1CUdRrWLKu+Yhqr3RCRDRHXGNLaF+WyatIAIdbGWnNY3wQcBr7JzG5dXmFmW2QzaR0G3jhD38QCWdJ86CnIakgO6M51W7tuU9Pn2L7Pr+v1GpLTOjQftiuK71uTdZNROoAQ07FoYTWznzSzS8zs2eXlzrnLgD8Dbgr8tpmVI8m/DpwC/Klz7rPT9XZz0Em8naHpAGMNRokhq31ENSXGENc5pXUKNDhKCDEFSaUEmNl3Ak+vLL6pmb279PiXnXNvyP++FXAWcGpNcz8N3Bt4BHCJmf0zcDZwDnAp8DMRuy7EJIyVCjBUVkMu/acmqXUUffRNF+hKFRiaHtD3Ev+SUwNS77d+mAsxLUkJK1nk816VZVZZdopPQ865K8zs64BnAQ8HzgMuB14MPNM5d+Xg3opGNjGXde5I0xyyGpqjGktWD13TfdwDJw4Xij7iOkRaob1Wa9N+fWU3VrUAHzRQTAgxhKSE1Tn3CuAVAdtfAFzQsv6LwJPym1gRqU8e0MSQdIAxLg1PJatDRNVHTkP26yOyIeI6RFqhWexUNSAdFF0VYnqSElaxLtYSZU0hT3AITaI7hayGiGpfMQ2l7ji+Ertz3dYk0trEHNIaM8oqhBB9WfSgKyE2hb7R1blkNWTw0qFr9k8mq1198OmH73Nre52GDsQKpe3zs8QrFXOi6KoQ8yBhFWIiYkwWUGVICavm/frL6tJEtQ7fPvk81y5pbXutm97bFKsGzJ2/XUU1WIVYH0oJEKOylrSANdF3ulUfWfVhqKQe3vGXsmO2+olLuY9d6QJd+a1t6QHQL0WgT2pACoOvlp5rq+iqEPMhYRUiAkMjTH0GW8VOBegrq2OJaoiY9mnDV2aLfvuIa2xpXbrgCSFELJQSIEZnyVGJWJdYp5w1qI88jymrPpf+D+9s7bmNTejxfJ5H2+vRd4KBmKkBymUVQiwVCasQMxM7utpEs8SMI6shopoCscR1iLSGklruaExSe25L/uEtxBqQsIrFooEVewkV3Niy6jvaPoqoHjyu/daTGOLaNiCrT/WAuD9Q+kVZu64SpCaYQqwdM7u/mbmW27u7W9nV3sc72nNm9tGxnk8XymEVk6DBV/XEjK7GFIa+stpFL0ntK59N+51wg9fuRV+7cl3bclyb8lrbpnINzWdd2vSryssVIjqXAu9oWB7ChWRT3tdxP+B04O2BbUZDwirEyEyZv1pHaHS1SVZHF9UBUdEg6o7TIrEh4hoirdA9GMuXJmkdo2LAJqJ0AJE473DOPW5oI865n69bbmbHAP+ZP/yjocfpi1IChBhI38jmFNHVEFndPrw/uqx6XV4feAk/Ch598Bmg1ZYi0ETdax4zNWDTkGwLEZ1vBb4S+Azw93N1QsIqJkNRijTommWpSh9ZnUxUr6u5DcGzT23Pby5pDf3h1OeH1txXC4QQs/BD+f2fOOcOz9UJpQSIRbPFTtLlePp8wY8dXa0jVmR1tEv/ISLatO2+gDaKPnbkuzalC7SlB0D9JAN16QF9JhWo0idnVGkBQiyKM83s2cAtgSvI8lnfFEMuzWw/cF7+8I+HtjcECasQMzC2ZIemAtQRXVZ9RHVohLRP220iGyCuddIKYYOx6qiT1lQHYM19/DHQlSHRwBlmdnHdCufc2RP35b75rcy/mtkjnHMfHtj2w4ETgQ865z44sK1BKCVAiAHELuUz5mVdX1ltK8nUS1Z9LrPHuJzfF59je+a41hGSIhBSpzUkgh6zsoTSAoRIhquA5wL3Jouu3pIs3/TdwNcAf2tmNx94jMfk97MNtipQhFVMSgrlraaqFxnzi32onPjmrbblWQbL6lQR1YOlv08Y0E7RlwER17pIK4RVEAhJDaiLtMaKci4xLWBp/RWL5tKhkVQzuxA4J3C3851zFwE4594PvL+y/u/N7BuBfwC+CfgJ4H/17N8pwLcDh4E/7dNGTCSsQiyUOvEOkVXfaF5Sonqw5/oQkR0orlNLqy9TpRGsKS1A6QBiZE4HzgrcpzP64Jy70cyeQyasD6KnsAI/QOaJf+uc+0zPNqIhYR2I4Wp/1ac8EEjEIXY5q6GDp4YOsqqLrkaXVV9R7RLTUPqI7ABxjSGtdfjms44tjdscYP/AwWBi2dR97xluhp4sF+fcuSM2X+SunjqgjaI6wKyDrQokrCPRdGlKIptGWsDS8ZXlkLzVPfvGlFUfUY0tqT74pBP4iutAaa3SNKnAkEhrqoO1RLoozWKxnJzf9zqzmtlXA18HHAJeFatTQ9Cgq4nZYqf2JtZFrPzVIdHVxcjqQYbJarQarB396DpGzWsQMhBryCCs+vd/+I9C/cDeHPTdtDoekd+/t+f+RXT11c65OcIJe5CwJkLTyUInjPmYclahsNH+3duGTg6wa99YstopeISJat0kAdX2m7YJkdkh4jqRtNa9v2Okjmwya81f1ffMejCzHzezW1aWmZn9OPAzgAN+t2a/S/LbbVuaf3R+P3t1gAKlBCyANaYXbGpaQMh75hs18xUQn+hqFFn1iag2kVId1qKfbakCdfsOTA8Yks+6d5vxLvW35bEqxWB+JKEbwVOBF5nZh4BP5Mu+Brgj2cj+Jzvn6iKsxUCvm9Q1amb3Be4EfBZ4S9QeD0AR1gWjX8YZqb0Gc9epHJIKUEetrDbVJW2MPNIeuUy5Dmuffg+MtFaJnRowVgrBWlhydFXfCxvF84A3Azcjq7/6YDKv+2Pg3s65F/Vst0gH+DPn3I2DexkJRVhXQOrTkzaxqVHWKkOEwie6OiRvtVFW66gVt47O9ZHUkDSCmOWs2iKuddHWhkgr7J3KtcpUpa58GKMea5/pYkU7ktTNIxfSYCl1zlnH+icCT+zbr7FQhHUl6GQ1LX2iUVP8qOibuzpIVuuijEMHMJXbqN5CaGpj0OCqhv09I62w97WNOQgrdipJG3NfTRiDJUZXdf4Xm4CEdUXopOVH6rl1c0RXqwTJ6p7tWhpuHbBEfzHtg2+aQlt/6/bZs53H1LT4pQbU7hdRGpUWsDx03hebgoR1ZSwtfynVaEbf6FNoxCmmIFTFpW8qwCiy6iOqfYgRhfXpQ2Ouas1+nnmtda9z9b0YO8oqls2SzvVCDEU5rCtlqXmtYi9jXc4FD1kdmq/adWndh74CWkdXTqtPZQCoyVet2ccjr7WpekAZn6oBfXNZfWfJGiOPNUVS/QFdZRPeCyGqKMK6YpZyUlvKl8QQ6n48xBTRPtHVXrLqm6/aN6IaI1rahm/7PhHXun28tmuPtPrksy4hyjp1RHcp57uhbMrzFKKKhHXlLC1FQOwmltT61lttZWhUdYggdjGkLFbffjXJe912e9oNl9YqVWmNmctaR+wrNqlNYLCEH846l4tNRsK6IehENx9jp2Z0RVd9ZLUzujoootiwbde6OrpmsRoyy9UQca1uW7fNnu3CpNW3bm4ZHykcGoldY6WAFNE5XGw6EtYNIuUT3hKiGwUxLnX2jZyOEZUaTVaHXnIfMr3qkPb69Nv3uXc8h1Bp7RNl1eCrZaGrZEJkSFg3DJ34loOPWAyNrkaRVd9L413rYohpKEPEta4tn+12rR+v3FVBzCirBnJOi87XQhxFwrqBbPov9i4RHLuk1VTR1eiy2jS4qkqMy+pdtE0I0Ccfto+49n09AlMDqijKGp8Ur/Bs8jlaiDokrBuMTojj0zciFSO6umvbGLJaxVdWQwcu1e3bR0b77NtXXKtthG4zMJ+1q2pAagOcRDs6NwuxFwnrhrOWE+NankcTVeEITQUo0xXB20NfWe0jqmOWtAo5RugMVzNIaxt9KgYMGXzVdHVBkdwwNv3qlxBtSFhFMifIFC/L+TJ2OkAIwSWs2qKrfQcY9RXVEJoGUoXmwfYV665lPrm9A9IDhqYG9JVJ5bGOQyrnYSFSRcIqAP2y9yXkS36sdICQVIAqvQZZta0PEbc+ojpESEP361Nz1UfUQwakdTCk1NVcVSimYOnnrqX3X4gpkLCKXejEOS1DJSKkKsDgvNWu9b6DkJq2LbYfu1pA1zGGThYQKq0RUwPGmExgaFpA6sx9ZUfnXCH8kLAKkTBduatttKYCjCGrVUJksO9l/BhVAnzyaev2qW5bt2/bPq3txUsNKLP386S0gDmRrArhT3LCamb7zOxZZvYfZnadmX3GzF5mZqcFtvNxM3MttzuP9RyWzlJPonP1e0j+ap9tjhx3rIFWQ2XV9/J507Z1+8WsEtB3oFXo61K3rC0/uENay4w5ACultIA1D9pa6nlWiLloPiPOgJntA/4OuC9wGfBa4HTg8cBDzew+zrlLA5v9w4blV/Xt5yawxY6iKAOI8dqFRFeDBlqFDLLqGoDVR+LqtvPZJyblY5xQWVf0bV/DfidUtt1XWV9ts7pPSHslDu9sccxWveTsXLfF1r6j67YP72f/MfWXuq9ni5uWZOkQ+zkw4mXxsdsXQmwGSQkr8D/IZPVdwAOdcwcBzOxngecBLwPuF9Kgc+5xkfsoRmQ/22yvOKpSZsjl2d41V0MGWYVKZd/arU3btuGbPtAgf7XH9hXXOsmsblfdpvy4TnIbhfY4OOGG2lWHrtnPgROPimBVWndtywEOcKjhIN34Suc2B9g/4DibgqKrQoSTTEqAmd0E+Kn84U8UsgrgnHs+8EHgm83snnP0bxPRSXU3dUIZMx2gzJDoapnWVICggUANf/tsX6zvO8BpSMmqkP1D0hb6pAj4vr4tqQFDBmCViZHLqisw/dB5VYh+JCOswDcCJwGXOufeX7P+wvz+YZP1SOjk2oM+X+RjRVd3UY6uxpLVqsz5Djbqm0saiz5VAnrVVW15HPIelAgZgFWm+qOnLVc1pTzWMZm7QoAQwp+UUgK+Nr9/X8P691W288LMfgE4A9gBLgZe7Zz7fK8eChGJEFmIEl1tGcAzSFabtq1bX7dN1/Z1XOO5HcCJHtu0XfqH+lSBtkv6Xet90wPK6wJSA8q05bLuaWfEXFPlsWYoACBEf1IS1tvn959qWP+pyna+/Hrl8QvM7EnOuZf6NmBmFzesOiOwL4tEA7DGZZLoapmmgVRjymofUQ0R0yaa2qgT2RBx9ZHWcluRpTVkAFaZai5rdQBWGZ/BWTts7ZGwkDzWtuOvDcmqEMNIKSWgOEU3nemurWzXxeuA7wHuABwAzgGeD2wBLzGzh/fr5mYy5ck2xct0Q8rrVPedNbraNeq/bt1Ystp0Sf4a4shqG9fQfBzfVIHQdIgY0eUS5fe4by5rlTWXkRJCLJuUIqyW37uO9V44555UWXQx8HNm9u/A7wHPAV7j2dbZtR3KIq93CemXWA91A65CI9FjRFd7yWpfseojq0MjqqG/nbrekuK41ahrSJUA3xSB8jrf7TxTA8rEqhiwSRHQMVF0VYjhpBRhLb42jm9YX9jB0CqNLwE+B3y1md1xYFsbxSacdMcebBLSvm901UtW22iT1aaUgb7RxpCI6k7DLRTfdkIirkOizr7R68bXvr5qQKyKAW2sKQI71ZWcTThvCjEFKQnrJ/P7phmtTqts1wvn3GGgmHzg1CFtbSIpn3xTzLMN+YJvE4eQy7q1eIlQZR/f7fqWtOoS1RDaqg400Udcq8cMWd+0rs9PcA9pDakYsHvdOFK6JtkVQkxPSsL6gfz+Hg3ri+UfjHCsk/P7KebUET1IKY811hdtSO3LqNHVuWW1yhBRPdhw811fR4i4DpFW30FtvoPiAukbZe363Nb9UPStT7x2Uv6BL8TSSElY30k2XeoZZnb3mvWPzO//eshBzOxs4CyywV2XDGlrU9FJ2I8xoquDZNUXX0kKlbcQUe0jnm34tOUrrl3pD3Xry+va+li33YDUgNSirHXMUfN1ih/EOk+KsTGzfzQz13E73KPdY8zsR83sHWb2RTPbNrOPmtmf5A41C8kIq3PueuDF+cMXm9mRXNZ8ata7Au9wzr2ntPwnzewSM3t2uS0ze1DdjFhmdlfgL8kGcL0kP6bogU7GewlJSegbXR2EjxD1LWzfJmx1otqUSxoqptfU3HzpI65l+uatDo1sD5DWvqklc00koNqtQrTyJuAPG27/lm/z9pAGzewA8LfA75MNKn8HWaDwSuBRQF1AcRJSqhIA8CvAtwH3BT5sZm8nK0t1L+ALwOMr29+KLFpazUW9D/BMM/sEWb7q54E7kqUVHAe8FXjqSM9BRGI/22wnGukJveTZ9ws/WnQ1VFar9E0RqBPVrvbrCBHRkNqr5WNXC+YVfS2/dddU2ulbIaBp+Yz41F31WdfGpkwgoB/0Ygqcc7/WtM7M/in/848Cm3058C3Ay4Cfcs4dKSliZqcCNwntZyySibACOOeuAx4A/DLZJfuHA6eT/Vq4u3PuI55NvZnsxb6abGasRwBfRfZL4UeBby2/CaIfOik30x5B9a/LWjC5rPaJDvaR1aYoZ9+oaRtdbfpGXOtSBKrt0LB+SJR7hChrSDS/7XOa4oDHudB5UcyNmZ0JfD3ZmesvA/b7FuD7gPcAP1r1JOfcZc65QQPfh5BahBXn3DbwjPzWte0FwAU1y98FvCt238ReUpoFa86+tB23bymrwZUB+hJbVptEtY4QOe3ygr71V9sirk3R1q6Zrartd0VafbbxmAWrPG1rW23WgpC6q0uNlqY0oFOIkfih/P51zrmrAvb78fz+BXlFpaRITliFSIk+g09iDLaaLRUgdN/QqGofUe0bsGrar/qSh4hrm7SCn1y2rZsoPWD78H72H5OJW9tEAiFSWp2mdROnaFV0VSTCo/P7Pw7c71vy+7eY2TnA9wJfAXwWeKNz7t2R+teLpFICxDIZ8yS9hGjIHIOtViOrPpMGxKapbd9UgboUgTK+r1dX9YCZBmCFlLgaG9VuFSIMM7sPcAbZuJ83Bux3G7JxQV8EfoSs1OgzgB/L799lZn9kZsphFctmkyILIQOufL/8m1IBmqKrvZlDVutyQ8eoxdqnDFaouFb3bdpnSC3VkfNZ6+hbmUJCeZRNOgcKICvBeXHdbeZ+PSa//3Pn3JcD9ivq058IPBv4E7JB7SeTlRW9gizV4Jcj9TMYpQSIjaLpCzZW5CjmF/goqQBd64fKaldUtenSf0ieawhNbfhWBIDdl/yrl+y78lpDKgSE5rP2pJzL6pMaMCQtYFPYxOcshmNmFwLnBO52vnPuoob2bkI2aArCqwMcm98fB7zLOXd+ad1fmdl1ZOWtnmRm/8s5d3Vg+4ORsIpopDQAayr6pgP4RFeDCJHOWLIamgLQFFGt0kdUq4OeuggtZQVHRTQVaY00AKssrQVtOaUh+aZ1eayxB2uFyOISUozEYrjUOTe0iP7pZFHMENouhzwEuCXwYefcP7VsV0f5DP2y6krn3BvM7HLgNmQVCN4S2P5glBIgRACx0gEKQlMBGqOrR5aV/m4b1d+2vs/l7DZZbZs4oLpPl6xe13BrW9+Gbykr2P0c6vJam7Yd8jq3lR5r3a9fLKL8edz9o8q/TJsQwg/n3LnOOQu8/WNLk0V1gNDBVgCfAYrJlD7RsE2x/NY92h+MhFWISPh+qQeVueo7/WoU6WnpWFMaQFXkfES16Vih8tmETzu+4lp9Pr6DsWJJq+/6EmPUZh2jJutcs2kNRekAIgXM7GbAw/KHwcLqnLuBo7Nj3aJhs1vm9zEStoKRsArRQFfkaGjtVZ/oaid14hJaEaCtrbp1bbJKw3bVbcv71B0rRE5DBll1HaNNXAvapLVt2xgR7a79BlQNqMNXItv+V0JnhRNC9OKRZIlB73TOfbRnG6/L7x9QXWFmp5OlMAC8v2f7g5CwiqisOdrQ9sU7JLraOxWgK8oWOtq8iTFkta+odlUCCK0WECKubVUBxpLWumVBPzz8UwO6oqwhl/5j5rIr5UAIL4p0gM7BVmZ2SX67bWXVb5PNEPp4M/v20vYnAL9DNjDrDc65/4zU5yAkrEJMRNNAqy6CZPW6mmVjDLLyldXqZfImgWyTxj4R1K626o7fFdGE/nmtfUtehUTLO9rqW5u1KZd1qZfwhVgbuXjejywH9f947HJWfttVU9U593ngcWRu+CYze6eZvRr4MPBg4GMcnQ1rciSsYuPp88Xrmw5QFx3qXXM1ZJBV1/oxZLUadfSZOKBOFEPldLty8yFEXEMGWBXb123rI611y4bmI0eozeqX4rJ5aQFrvqIkFsWjyXzuDc65Lw5pyDn3auC+wOvJpPY7gGuB5wFf55z79MC+9qbfUFIhFsiQS4t90wEKur7wO1MB6gZZxRikE1NWadiurk8+0cwqvjJat13TW1Qcs1reqq5M1sHSdl1TtJYpb9tU8oqaZeXjdZW76tqvodTVkS4G1Gb1LUvVVpM1dmkrITYZ59yvA78esL11rH8P8PCB3YqOIqxiVaQU8QiJrtYxWFb7Ru5iymo1Oul76R36RU6b6GrLN1XBtypAaE7rmJUDaiKtBX1TA9qWCSHEGEhYRXRSksa+tEVNQ6sD9BlotStvtWBojqPPfrFltemY5W2q24UI6rU1Nx9CxLVNWsFfWsvElNagwVuZtA6dtrXp/2MT0wKEENMgYRWigz7pAMXyroFWnbLaNsgqVFa79hsiq3WDq8r45Kl2iaqvnIZIrK+4ViPDfaS1K/e1uv3I5a7qfhTFjrJu2sx3QojxkLAKEYnii7tPKsDiZZWG7eqO2XT5v0qfyGkTXW21iWuZtufSR1qb2vVd3vu93y2tXbVZ6wZgDS03Vbd/k/ymWNpqDVeShFgSElYhKvRNB6jimwowqqyWpWpqWe2KSkK9KPa5tB+a6xoiriEpAqHSGmNigRGktcC3NqvvNK5KCxBC9EXCKkZhLdEH33QA3+hqwWSyWl3Wtjy2rDatg2a59Ll83yWndds1bdsmrmU2TFr7pAYIIcSYSFiFGIGjAutfFQBYv6y2iWpVHGNWCai2F3L8grq8VirrC+aSVt+BWIHSWuAbZS3TdlUixUv9Qog0kbCK5NkfYCtNX45NX4whkaKmtqvR1d6pAENktXz5PWVZreIb4YxNSIS3LdralvYwh7SWl0eU1rrUgLb/nbWnBazlCpIQS0LCKkQJ34iPz3ZBqQBVWe3KPQ3NTU1VVqvEiqb6EhJtLdM1GKsgprT2eb8j5rS2pQZ0RVmFEGIoElYhGvCJBIVEV4NktaBv3c2UZXWuqGoTvtHWLmltWjdUWn0i7m2R9q71u5btlda6fNa6H2NtqLyVEGIoElYxGmu6bBb6hVt8ofeW1apYVGW1aX25LVqW95kUoMwQWa0ydVS1iaHSOlZOa7Xtus9AU1+68lprl+2WVqjPZy1o+tEW82qFEEJIWIUIpOmLuW6g1a79QmSVyjLfS8JNKQVDZbVpuxiyOpiIo7OaymxVtynT9nqU6SOtvnmtQ1JJapcdldamfNbQKGuZNeSxCiGmRcIqRE7sSE85urpLVg8el90K0WiTiLbLuSGRtoJUZLW3W/rUq4ogsLGktZo2MHRGrLaJC7qisD6R+nI7AdLqE2VdS1rAmq4cCbEkJKxC1NAUAfKNrrbKKnSnALStaxPVthSAlGTVmxjR055tzC2tPoOxiv1CPitNP4aoe7xXWlNjLSIshGhHwipEB32/EMt5f52yWjwu30LyVJsuEcNeUW2S0D1PwHO7UWV1DALEdcjzGSqtbdtV3+Pqvk2C2rScmuUN0hoaZfWhbhIOIYQoc9zcHRDrZoud1UVAfKOrkOWtNsrqkLJF1XV168F/lH/btm3HGUVWfTds284nGrjtt111s2uB4xvWHwROKK27DtjXsG4HjvxrXAOc6LkdpW3L78U+jr4fJ3Ssb1tWu/w4OOEG4Ggu9tY+v0vjh9jPgZr3apsD7OeQVxtt7fgSUs9ZCJEeElaxsfjOf962TVcqwB5ZbboEe7BmWXk7atY1bVM3un9sWa0yiqyGCEd126b3d7tjfWmzqaWV0rbFe9IkrsVxoF5CT+hYX7dtsd2RfY/jMHDMVtaZneu2YB/sP2abQxzgAIe4ni1uyk6jXO6wpRxQIUQvJKxCVPAZwdwmuLtktaAqq22iOjSSuqszHW1V9+0rq2U36SWrTRvFioqV26l77zyirUOktYyvtHZtW2xfUBd1hW5B7eof7JHWQ8CBE7PXdPvw/l3SWqYQ2LUg2RZiPiSsYjWMkXpQbbMuv64cXS0PsgKOVgOoymqbqPoIaoFPNPVIXzr2Xa2sNrVbFVSPaGtfaS1HWavroFtaYW+0FbrltTh2F9WIakE5MlsjrbA3NaBOUkMv569NdIUQw5GwCuFBWzpAHUdSAQpBrRvQ4psG0FbAv6Dtu71LVKv7hwhzErJ6denvmwXs55nD2rVbVVrLDJFWaI+2FvuUqe5f5UR2v5/VPnVRI61b+3Zqo6yhkjo0R1UIsW4krEIEUpbXuuhqkKxWB1+1DZLypenyr0/aQJestg2yCmaorF7dsixEXOuOH5ge0Laur7TCXnGty00t0/WZqYvOFhHdcpS1TWQrx9y5bqs1ylqNlpbzWEMHXgkhNhcJqxiduSsFdEVHy+vb8lfL+7SW3qnKarkCwBXsXlcIiW8Jqb6EpA4U+Az4KgiOrg6R1TpRbdumTV6bzDMw+tqWGlDFR1qhXVzL+/alnGpQPmb5GFfQnIvbEGUtU46aKoIqhBiChFWIBgrJ3h1R3Wshe6KrBdV81YMcFdZrOCoJhTj4XPovqIpLwZD0gRD5GcU72hr1kdSufZvEtae09k0NgG5phb3RVmi/1F/F9/NUluGDpeMWfbwOuFXTzsfB1s6uKOsmDL4SQkyPhFWInlTnUt+TClBQltXPkwnBQXZHV+tksSmytUWY3JbxldXJo6tNOw0R1aa26sS1Zz5rG11N+uSP1kVb6/CtElGm+p4WolqkCJTFFeqldV8+oQB7o6xrk1RVCBBiXiSsQnjQlA6wpzJAXSpAWVa/kP9dV+KqTHl0NnRH48rUyU2IuHTJaqxSqZ3ElNVqu77SOmKUtW49DdvURVvL69raK9P23l5ROv6+/H4LOLW0TVlai+hrnhrQFGVVKoAQIgYSViF60BhdrcrqFeyV1eIxHI1OVsuEXkEmPl11PZvkxgcfoemiGl3tJCS6OiYh0tpB3wFYUB9lbXqvQ9/XrhnJrmXv5w52f/aqUdVyXyvlrw5ds78xl7VA8iqE6IuEVUzC3AOvYtA0WcCu6CrsltXryOT04+wW1m04aguVL/Dt/bvv97M7alediahY5ktoEfldfWvZdrZUAN9ZreqO4SOtAwdgVfGVVuj/vlbLpW2zV1DZ3r1gG448z+392Z/beVuFLFcj/QX79uayQnNaQFOlAAmtEKIJCatYBPvZZjt2jqEHbTNaFdOwAnunX70uv32MTFY/TSauV0BmAR8HLudowmDRViFQ+/O/9x8V12JxITzVKT/L1IlOl6iGpgIER1erDJFVH3P2+bw0SWtdmwGpAQG7ttIlrm1R8kZZvZLseRcLri5tWCTD3hq2z4TtW2T71h1n3+77wztbcGLz+xKa07q2HFghxDCSE1Yz2wc8FfgB4PZkZ9c3Ac9wzn0qsK2TgAuA84CvAD4LvAZ4pnPuS7H6LDaHajmrneu2jlYGKJevKv7+ApmsfhzY3iaT1I+XFt5QOcJxwF2BW5MJxG2yxds1xlOdH75MaLmjkEFWEGGgVV9ZDYm+hYhr3b4DfiB1lbnyibKW8X0/O2V1m6Oyejnwkfy++jm8LfA5jojrf97iaBu34ugPshN2/12kBUB9tQAhhOjLMXN3oEwuq38HPIPsVPha4D+BxwPvM7MzAtq6JXAR8GSys/FryMIHTwLek68X4gjlGqw7LTVXq/mrwNEv7fLf13E0X3V7G/gg8M789hH2SgL5sg+TycLVZDKxXXQwk49CQMqCXD5+CL77TXKVtk1WK5evg9imff+m4/pKtt/qPdQNdhvyHnrJ6uXsltVPU/85/DTwPuBfyT6vHz+azlIMztrzA+1o/GPX1Qfar1QIIfpjZgfM7H+a2cVmtm1mXzCzN5rZ/Xq09Tgzcy23Px/jOfiSWoT1fwD3Bd4FPNA5dxDAzH4WeB7wMsD3TXgBcCbwKuBRzrkb8rZ+E/gp4PnAY6P2XiyOoV+kh67Zv+uLes8kAUe+4D9OJggf8Wj1GjJpvRr4qtLyW+yVonKKADRXFqjSJkYheas+6wfb7kJzGn0mE6gbYDXkPTxIw6CqQlIvJ/sxdDmZlHbxabLP4YnAzeDzt4DLgNM4WiXg4O5+duWxKk9ViDiY2QnAPwDnkl2NfgtwEvBtwIPM7Iedc6/o0fQHgH+pWf5PvToaiWSE1cxuQiaSAD9RyCqAc+75ZvZY4JvN7J7Oufd2tPUVwKOBLwNPLGQ15xeA7wcebWa/6Jy7POoTEaukKrbVCNKuCQKKx5eReWqQrBaUC2velsx0iht7R3fX5To2XWbuE8UT81D3HnZNl7un8kRfWS24huyzux+uuFeW5vJ5ss/aCezKqe7KYxVCROXZZLL6XuAhzrnPA5jZNwJvBn7XzP7eOffJwHZf45y7IGpPI5BSSsA3kv0yuNQ59/6a9Rfm9w/zaOshZM/tbVUhdc7tAK8Hjs23EyIuRWWAT5NLw8fJ0gFCuYbd+a6l9AAh2tglq4Wwfo4sch8iqwWfJpPWj2dJWl9g99UEIcSkmNlNgR/OHz6pkFUA59w7gN8mq6T809P3bhxSEtavze/f17D+fZXtpmpLiH4chOwqTVO+qi+SVJECHwcuzyK4fWdaE0LE4r8AB8iKzr2rZv0/5vffPVWHxiaZlACyigAATZUAPlXZbqq2MLOLG1Z5DwITQgghhIhEkSF/lXPO1ay/Mr+/k5md6JwL+Zl5TzN7LlnNv88Cf++ce+uAvkYhJWEtsu+a6qBcW9luqraEEEIIIcqc0RTMcs6dPcHxixSAU8zsgHOu6jt3qPz9bwFtPzS/FTzDzN5KNoB9tnE/KaUEWH5f90uhvH7qtnDOnV13Ay4NaUcIIYQQIgIfAT5D5jPn16x/fOnvEz3bvIysdv3dgZuT1a//LuASsgpNbzCzY3v2dzApRViLcHXTpIZF8UufNP+YbQnRj1uRFVzna8hKA/VJ/KtUBxCiFzcjG3R1M/onoN4VODM7q/p+/QmxXi4dGkk1swuBcwJ3O985d5FzzpnZs4EXAc81s+uA15GJ5s8BDyQbPHEccNinYefcm8mqCxRcDbzezP6BrBLBPYFHAX8a2OcopCSsRdmF0xrWn1bZbqq2hAhjH3AKcEsyab3iTDJZ+CBhg69OJJvp6qvy+9vQKq5KcNlMitJSBcXP9G04+nm5TWWnutmt2viq/HYLuB3ZZ/uE0k0I0YfTgbMC9ynPXPNbZGNpngy8vLLdc8jKe54GfLFn/wBwzh3Ma9i/GHgQElY+kN/fo2F9sdynPlDMtoTgANu7arHuP2b7aC3WE26A6447WkS9qEt5Klk1oCtuQfZlfzX+tVhPJJv34tbskdWiG8eX/q5KQ1vB+aLgu5ifNtlreg+L5eX3sKmdWmktwqO+0npbss/v6dkPsFuS/SAr929fdjtma2fP3uVJAwBNGiBEjnPu3IH7O+BnzOzlwMPJ5PQKspk9P0RWd/464KODOprx4fz+1Aht9SIlYX0ncBVZIvPda2qxPjK//2uPtt5EFgL/JjO7tXPuc8UKM9siq+V6GHjj8G6LJVMW0f0c2jU9a/M+h45Mz3rgxG0O7uRTt+7j6NzqkH25F7crTufoFKCX035ZtiqrN2OXrBYRtP2EiWrTdlV5rUbs9tNeWatrffcGHQzdv9zOhFQTknwPP+Q9LN678rF2Set+jorrfrp/QBWymv9guh3Z11XxuSs+86XPYXmWKyHE+DjnPkglAGdmDyMbp/SOyuRJfTk5v58tlTKZQVfOuevJws0ALzazI6f7fGrWu5K98O8pLf9JM7skz+Mot3UZ8GfATYHfNrOymP86WXzgT51znx3n2Yils1WKClUjRFWO2drZG22Co7J6CrB/P3Av4Bvy21exNxHwRDJBqMrqLbLVhawWKa1laShudXRdsvURpKpsNWWHD+JmHR3oK5xd+zYdt7pPx/HbVtetq/ux0fZetF1+L+9bbFP+vBxZcJvS/W3z24nsjl0cly+/H9ln9V7A6UdTAW5Frahywg0cyGe52n/M7h8YiqoKMTk/k9//fqT2HpHft840OiYpRVgBfoVsDtz7Ah82s7eTlWO4F9ncKo+vbH8rsvyPuhD1TwP3JnuRLzGzfwbOJktwvpSjb6YQ3tyUHa5n68jjrX07HLqmSA3gaFpA8ffp+Yb7yC7UXHE6bJ9OJgzFzFWFUZTFaT+1kdVqCkCd4NRJTbGs6bdxNU2gGmUt+tDkHcFR1qYdbsbRSHRTOwVdEuQjuL6yGkiX0IdGxk9o+Lv6HhXvYzXSejzZ5++IrF5O9uEs57YWr/t2vvz0bPviR9dtyc60t6r0uUG0DzRWFRRCxMDMbg3sK0+9ms+A9VzgAcA/OOf+sma/S/I/v9U59+nS8icBL3POHSwtuwnwP4DvJTs5vGKEp+JFUsLqnLvOzB4APBX4QbKcjC8Cfwg83Tn3nwFtXWFmXwc8K2/nPLKz9IuBZzrnrmzZXSTG9kyj5Ku5q2Vq81iLyBMc/WIvrv4XEanPk6cInE67AZb+bJPVkEEvbeLqI61ljudoReNe9JXW8v6wV4SHUtdGxOhqn/fLd/1BdktrXT+293P0l1Td61/6kVRcJbglmayexu7oainKWpe/WqbrSsXQ7YXYQO4C/L2ZvQ/4GJnT3ZfsEt37ySSzjmKg100qy18I/JqZfQj4BNl/+92AryQ7q/xQWXCnJilhBXDObQPPyG9d215AVjOsaf0XgSflNzEjO6Wo5FJpktcjeax1g2FutWfzjMLVrm0wnV2XcmmOyPUdod0ko13SGjXK2raTr7QWbfShLQUhoP2h6RK+UXIfiver/Fmsa2ub/MfG/t1Bfjj62Tshb6csq7fKl9+qtB6yH2xkVxzK6QBN0llOudlfisQqdUCIIC4lC+h9A/AdZGNz/p2sQsCL81TLEH4JuA9wZzIZNrKZQX8PeIFz7t8j9bsXyQmrEEugPPBqa98Oh7Z2skJ3RZS1TFHmqmCLbPbngxxNISjTdbm4TWaafhfUeUNXmoAP1SjrbNIaykipAF3NjfHewu73ty3PFY5KbPGZLL//hYSeUDpekQZwq8r60v0xWztH8lfbkJAKEY/8qnM1VdJnv9rJk5xzzxzcqRGRsArhQTl3tfx3kRZw4MRtDgGH93X8S51InktIJgpFukAhsF2Rtb6B6mK/JnEtS8uQKGtvRmm0gRBZjRhd7SurPu950zbFjyOffhSSemLN46qsUn58NLpacEBRUyFEZCSsQvRkT5T1mv35l3fLv9V1HBXCLY7K4In4iYnPDENtFbPqBAbCpbVMlChrE2W5HBpt7apCEJkYTXZ9JmLMOFWV1PKyfeyV1UoqQDm66pMOsFR22NqVyiCEmBYJq1g9bQOnqpRrsW6xww5bu/ava2tPlBWy1IAyhQiUJbAsrjvEuUQP9RJTltimaGvXIKsys0RZC+EMEVefPNWmz8aM0dU6Ue0rp237lY9bHLMQ1brL/9Vlxa4N0dWCtcmrEGJ6JKxidFIccFW+rO8rtHVpAbVRVmgvU1TUsSzLa1kq6l6u0O/7qngW7XeJa1laZ4my+piwj7gOHVA1UFZ9BszVrW/6V6mTzj4Ds7pEuElUqVveHF0tKKcDKDVACDEECasQgXhHWX3+vcpSOCSy2panWG73RPamDFTTBHylteqWk0or1KcL+IpqcZyQ5QObhXBZrYpq30FZdW1V+1Odvao6OUBNZPXAidu10dVyRLUaXW2qECCEEG1IWIXwoE5Sq5MIwNFLo3uktVxqCI5+8VenRS3WlSXzOpov6xbyWZWVulHjRZtN0dYY0hrMUGktCBHVNjxktS262lYVIERWfSKqIdHYrj5Uy6R1yWoeXS3oiq76UN5eKQRCiCoSVrEaipzTMdusk9QiLWDXRAJkpX5apbWgSVybaEolqLvcD0dFtCrCVXENkdYyZbcMjrIWG1Gz4ViVAwZEVvvmrQ6R1SH5rV25sk2iWizbV/f30VSAcnS1oE4215IOoIFXQsyHhFWICuWBV00UEdfWKOuRKVtrKgfUFXT3Edc66S32aZPXsrQW7RSU0wR8pbWt1FUvaW3asGqIfcSnS0Q9UwD65q2OKavV7X0mIWhKAyge1y1rkdUiuqrBVkKIMZGwio0ldOBV2zbVKOuu1ICdraPS2jTzENRPq9k2a1FZJIv1BSHR02L7ZKSVlo19BDYkB3VkWa3iK6tDRdVHUsvLT6jcd8hqQVVWC0FtiqgqOimE6Msxc3dArJsUKwQMpfqlfPRx9qVdzuc7cOL27jnW6y7BFo/LZYOaIl5N66isK6hWHyi/HdX9uyoVVJ9D+XkUlMWtTeo68d14f80tZL8eXelbESCGrJ7I3lH91WP4fF6K5SdQ/9lrqLd6pEs1qQBNNMlr6ICroWkF22PU2hVCTIYirEJ00Dc3dmvfDjvXZfsdzWeFXZHWprzWMnWR1bqoa1PENSTa2hRpbZtYYJRIa7ExITsEtttj0ylltW27oRHV8vK2gVdAMZMV0JoK0PRDzgcNuBJCdKEIqxA1NEV/9kZV26OsW/uOXkI9EqE64Ya9kSyovzxbjbiW11OzvC130jeC2rSd76Vu6I60BkdbQyOoTfuOJKtVppLVtih7XUS1vLwpol8+Ri6rTakAXUwx2EppBkJsBhJWIXJif7l2Sit0pwhU13XJSNc6Xxn12a4rytcmrdX1QbQJ6BC5rTRRpktWu6KYdfjIal0KQNMxmwZTdX2mqutaZLWaChASXV2LWK4xzUmIJSBhFSIQ3yhrmWBpbYq2Nq2vLq9bV5CatA5OLRwoqNWmqsSS1aqI1m3XtE1b220/VqrL2iL6u5Y1y2pbVQBfNGGAECIUCasYjTVFIkKjQ3UDsAB/aa0uq0bGmtaXlzdtD/0u+48lrdVt5qDJd/vKapUhshoSWa/25YSa9U0pAAGyWqb5h1s6aQNCiOUjYRWiAZ8okM+l0HJqAHhKazUKBu1RsvJ63+U+0lqN8sWS1tGirT1oEtUhsuojor6y2nW8ruh71+dl17KjsnqkazUVAeqmYG1jLekAQoj5kLAKUSJGVKgrNQA8pBW6UwB8clur21aXzyWtMH+01TeqWmxbJiVZbVvetb5FVqszWbWlAoRUBlA6gBCiDxJWkTwh9RObIjlNghlSQqep7bZLoHWpAb2ktby8Tlqb9luCtM4RbfWNqla3bUu/gHlktWtgVdt+R5btldUybakAdaz9Mv+a0p2EWAoSViFa6BsNaksNKDOLtNYtn1NaoVtchwpsVzs+0lx9HqnIat22XbnOHrLalgqwe1l7dLUtHWDtYiuEiIeEVYzCJkQg6oqdt0VZy9TJwOjSWjcoaKi0lvGtWADt4tiUKlDez7eqVZfoNuWqtqUAQHst1BRllYZlHrLqM9BKCCHGRsIqRIW2L2GfwSM+A7Bgb2rALsaQ1qb9hkhr9XdJiNhBWMSziT4RWF9Rhe7nVCZVWe2RBgCVaYZbBlqVl7X9//S9YiExFkJIWIWIRNsXeTnK6pUaAN3SWrdsLmltK43VlSIAzcX6q7c++LTTJKohUeOVyGpoKkBf6vZf0rSsm3AVSYiUkLAK0UFbVKjpS7tPakCwtPYVFxqWjZXTWm27WO8rrmW65DNUcpsu/4dK95TVAOqWjSCrvgOt2iRT5ayEELGQsIrorCHy0DctwPcLvS41ACaU1qmqB3TlU7aJqy99IrC+ogrdg6vmKl3lu19HndU66lIByoT8UDvSpspZCSEGIGEVqyIlWe6KstZFsMrUSsVog28alg+V1rq2fcU1ZPBUGz7tNImqbyUASLPOapkaWQ1JBVB0VQgxJxJWsTEMybnrkxZQZvegFL/UAKipHABh8hmSBjBUWkMHY4VEXAu6qgCESm7T5f+uFIahslptu3zskOW++5U/Pzl9UwFiDIDSICohRCgSVrHx9Bno4ZsWUFf6qkxXagB0SGtMqWlb7iOtddu1bVsco+sytw+hEVjfy/91fekjqz7HCX1/fH+MlD43XakAZUIHWm1iOkBKV3SEWDsSViEiEPpFHpIasIsQaaVj/RTSWrdtyOX3ulsoPm34RFVhb8TUV1Z9UgHqloVODLBnWb2sDh1o1bYclA4ghIiPhFVEZU0Rh6pohkSJ+nzJg0eUFWov73YKTErSWmwfEnGt27cqoH0E11dUof3yfttxQvNWu7YN2a+DJlkdo4xVX5Q+IEQ9Zna8mT3GzF5kZheZ2Y6ZOTN7Ssd+DzWz/2VmbzGzq/J93hSxX+fnbXb2JYTjYjUkxKaxxc4gQT/AIQ5xAMhkYftwdk17a98OO9d5trsPuC7/+wTgYGV9eVn576792rY/Ebgm/3sLjjh4IVIHa7arbls+RnmfgvLxfAiNvDZJXZeoQresJla+Cpqjq3V0DbSq32fz0gGESIAzgVf22O+PgZtH7gsAZnYr4HmAAyxm24qwChEJ37SArgFYu/bzibKOVTmgbXvfAVZ1g7HqXLxt8FP1FoJvG02X/0Nkta3E1Uzlq6B/KkAbY6QDLGnSgDJruqokFsc1wEuBHwfuAfyq535/BfwCcH/gYZH79AKys9KfRG5XEVYhQtjPIbbzqGgXN2WH6wO+zJqirAdO3ObQNdnyY7Z2OLyTt3nCDXAw/xeui0g2RVG7IrFt0U2fSGvdMeqireAfca32IRY+EdWCpnzVun1il68iYH0gTakAvpUBQi/Zx77Ev8OWcmbFRuKcuxR4QvHYzL7bc78fKe1z/1j9MbNvB34I+J/ATWK1W6AIq4jGEiINsb8sQ74ofaKsoZGuWsasHFBdF1IVoK6sU0jENRZN+a1NfWkbXFXsV92+IJasBg3OCouu1tEW7QyJhKaWDrDdu5ivEKINM9sP/C7w/wHPHeMYElYRhSXIahuxLkeGCHH0AVgxLy+3La8SUhWgKn/lfdrEtU+lAN99fUW1aLO6b9P2Y8hq54C0/qkATekpIZ/pTY10Lv38J0QEngXcCfhvzrnrxziAUgKECGSMtACfAVheqQFdhA7C8lkO3QOs6lIEqOxT7Ad7UwXqnsdQfC79Nx2zK7d1bFkNkVgP+gy0yvbTCP4CpSZsHGeY2cV1K5xzZ0/dmTkxs7sBPwO83Dn31rGOowirGMyY0YUlXMKrfkn1zffrGoDlxdhCVF1eTQ/oGoxVlybQFnFtin72pa3Npr5U+x1bVqvHCtl3woFWMN7AqKZ2JcRCpI2ZHQv8AXAV2UCu0VCEVQxi7ZfCDrDNoYHS3BZlbVoXbQCWT7R0SKS1ug72DsaCvdFW8Iu4FjR9zJr8KeRj6RNRbWo3hqzGHERWYUgqQLaufzpAavmrU6Ao60Zx6dBIqpldCJwTuNv5zrmLhhw3Mk8GzgV+2Dn3hTEPJGEVq2FOeQ6pydomwYNSA5qYW1rBvwZrl7hWGfKWh4hq9Vhtolpto01Io0W+66OroWxCOsA2+9k/Yt8lrSKA04GzAvfxy0ebADO7A/BLwNuAV4x9vKRSAszsvmb2f83sSjM7mM/c8Nge7TyuNMtC3e3Px+j/prH26OoQYg6+8qZpAFYffCOFbWJWNxjLtyLAiTW3Ifi05zsoa4isjpKmEX+gVbZu92dYU7EKERfn3LnOOQu8/ePc/S7xAOB44NbAP5jZPxY34HH5Nj+WL/uVoQdLJsJqZucBf0km0W8DrgC+FXiFmX2tc+5nezT7AeBfapb/U99+iowpZHXq/NWQuqkhA69C2951nLlSA3z3r1sHu2u1QpwarE3Seo3HNm34RFSb2p9DVkdiiujqUqOyoSjKKjaMO+e3Ou6Y37409CBJCKuZnQy8HDgWeIRz7lX58tsA7wB+xsxe75z7h8CmX+OcuyBqZ4VoYIy0gD3HCJm2FYZLaxlfaa1bX00RgGGTB5TpG30dS1S71g8V0YkHWsF8s1AdYv9iJVfSKtaOc+4VNKQCmNkFwDOBpzrnfi3G8VJJCXgC2by2ry1kFcA5dznwi/nDPhFWMQKblgoQK5rUtxh7k2R41Wb1xbfup++6uvVT1mANbaepekBdn8eS1ZFTAarEGmxVR8iAqzlkeAnVR4RICTN7pZldkl8Nn4UkIqzAQ/P7C2vWvYEsVvNtZrbPOdc0aaRYEZvwhRIjyhotNaCK73bVFICuSCukUYO1eswqTVHbWLJaZYJ6q23R1ZAfU1WZVRSxGUVZxdiY2auBU/OHp+X3TzSzh+d/X+acO6+yz9OB78wf3iy/v7eZvbu02XnOuctKj29PNkDs5rH6HkoqwnrX/P591RXOuevN7N/IyiacRZaX6ss9zey5ZG/IZ4G/H7Oo7SaQcnQ15JL8VISUxWrLcy3nsnozJJ+1aztoz3ctr69KbUGXuEK3vPZlqKjCMFltimj7knB0dep2U0fSKkbm7sAdKstul98APlGzzxnAvSrLbl5ZltaXKQmkBJjZzYCT8oefatisWH77wOYfCvw88GPAM4BiBNttQvsp0pbVWIw9T3pXtGr3uub2vaZtrdKnRuiQFIC69XXi11YFoDqBQOhEAr77N/Whqc9jyWqkVIAqfaOrVdYknZtwFUesH+fc6R1VBU6v2edxHtUIPl7Z5/758ld49uuCfPso+auQRoS1fFpu+oa+tmbbNi4DLgBeC3wU2A98PfDrwP2AN5jZvZxzN/o01jT9GtmvFCGOMGaUty3KOnja1j6R1rptu9YX24B/xLWOWC9xSEQVwiW9bf+BstpGrOjqXIOt1oairEIMJ4qwDpytwXwOEdKwc+7NwJtLi64GXm9m/wC8F7gn8CjgT0Pa3WSmjK6mGPkYMuNVdd+Qma/6VgwIzmftWkfDdl3tFOupaa9LXMF/AoEQ2qoK+OaZ1m0bsr6PrFaYOroqhBBzEivCejr9Z2u4prLs6pZtfQvd1OKcO2hmvwm8GHgQnsLaNP1aHnm9y5A+LYFNSAWYkxAZ9o2y7sFXWnftQ3O5Kx9ppWYbao7XJK7gV3u1iZByVyGiWrf9GLK6px/1qQBV+kZXq/ikr9RFDVOvEDAXirIKMYwowuqcO3fAvleb2VVkCb+nAR+q2awY+fbJvscp8eH8/tTWrYQYkcmjrG34XvLvE0mtqxLQR1yrDJ35qnrMOprkcWgur+/xPVMBYkVXx8xPXVPu6xAkrUL0Z/ZBVznFyP97VFeY2U3I0g12gH+PcKyT8/tB0dpNQdHVcOq+kLq+sENyB9skpE1eWqduHTJIKFTgyts1RS/Lt9h0td3Vr+q21W3a1vetcVuiLRVgrOjqWkkx/UgIUU8qwvqG/P6RNeseSnb6/rtINVgfkd+/N0Jbq0ayups66exTKaDfsf0qBkDPqgEQJq2xKgQ0tVe3b6jIhu4XKqrV12ssWfVMBagydnRVkcJ+6LwqRD9SEdaXkOWufreZfU+x0MxuTTayH+D51Z3yWRcuMbPbVpY/ycxOqCy7iZk9E/heYJuG6cTEvGxSxKNLGvpGWau0zoLVV1rrHvtcCm8Txy5xbWurj9B2HbdvSau6bUJe113r/FMBYkVX6/f3+7xN9QNu6UhahQgnhbJWOOeuNLMfBv4PcKGZvRW4Avg2shqtv+mc+7uaXYuBXjepLH8h8Gtm9iGyorn7gLsBX0mWIfdDzrlPx34ea0In1GGMUd4qJJfVewAWdM9k1Ta4qm+FgGJbao5dFbjYyTtdUuxb0qpu27pthtSyLREy0CqV3NUp2hdCbAZJCCuAc+6vzOybgf8J3Bu4KfD/Ab/lnHt5YHO/BNwHuDPZKH4jm3zg94AXOOdi5MKulqXK6lz93s8hthtEsoxPNYCQEljVigFRBmBBeEWAIRUCmrav9qeONpHtM3tUiKjWbT80At2SClClNVe5um1g1DOl/NU1y64GYAkRRjLCCuCceyfwkIDta+uzOueeGa1TQoxIm5DW0RZl3bPtkChrH2mlY5+m7crbU7NPE32ktI6holq3bcgEAnVtVmQ1ZKDVFNHVNYnWNvvZP5MYS1qF8CeVHFaRADtsLTa6umZCclmDBmCF5LP6rG/apy1fdeoqAT65rm25tF2Dr6h5XLdfa5vNslqlS1ZjRFeVvzouOucK4YeEVQA6afoSEpHqGznpLoG1Wwy6pLXMKNLqK2yxqwR0SWDoQCwfga5uX9dG3b5d+x1Z15wGAGGpAFVSutQfm6Wfv5befyGmQMIqkjlZLrlCgG90qU5GxxaJquQES2uVIZfEh4hrW3tDorKhVQKKfbqW9a0wUGLM6KrSAdJCV7iEaEfCuuGs5QS5ludR0FXiakiUtZa2yJ7vJe46aR0irn0Etotq26GiWrRR12a1ja79AlMBQma06lPGaox0gDUPmhqLtZ3LhIiFhHVD0a/5aRgzGhUirZ1R1io+l/59pKxp33IbvpfqQ0S2zz5Ff7rarC7zaSOyrIb+IJm6lJUYhs7NQuxFwrqBbPrJsOvLuu8l+rHTAoamDkRJDRiSozlUXJva6yOmIcdvanMiWa0Se6CVSDMdadPP00JUkbBuGDoJLgefKFhoasAo0lq3XevAopb1Y1UH6HOstn76vgadkeBuWQ1JBaij74+hus+f8lenRVfChDiKhHWDSPnEl2KEo4kYl1PnirLCxNLaV1yL9oYOqOrTTpeo9o0y9+h/aCqAT3Q1djqAylmNT8rnbiGmQsK6AehX+ryMHZWKMQBrNGkttguVwDbaylwNEdw+fRz0ugzLW506uirmRedwselIWFeOTnLLpm8kNjQ1ADylte9grLbtfdaNSd8+zSirdYyduxr7h1dqdWGXcJVH53OxyUhYV8xSTm5L+KIYSt2XfcyarD6y4iOte6grd9V3MFZ1+y5JjF3aKmSAVp8BYiPJah19o6tTRk6njtIu5Xw3FF0xE5uKhHWl6IQ2D2Pk88WKsta27VPuqq+0Ftv1Fde67XyEc0jlgL6i6ivsPWR1zOiqBlvtZkk/nnWOF5uGhHVlLO3Xd6pfEFNdrpw7ygoTSGuxbQxxbds3Rht1hM541SSqgeWroP79WkJ0VUzDks71QgxFwroidPLy49BMkjwkShUzytprEBaESetQcR07n9XnOKEzXhX77Nlu7+sWWr6qjbGjq5tGqj+im9B5X2wKEtaVsMST1tK+GMqk+sVeJy8+0uo1CAuapTW2uFbbGHJ5P3T/vtHgyLK6hOiqSlqlwdKurAnRh+Pm7oAYhk5Sy38NDrC9J+p7U3a4vvK8fLfr3Y8Ttzl0ze72j9na4fBOpf1Cwg5WTh/7gOtqGi7k7mDNurLk1e3bxBjRV58pYkP285TVOnxltfoDZQxZHSN/NbUKAWthh62NyTcWm4cirAtFv6jTZcyoU5/Zr8A/NcA70gr+KQJHtsdvooAp8Z3takRZ9Slh5RNZDUHpAO0s+epP8d2g7wexNhRhTZy1nnSW/IUwhC12vN9T3+ip73b7j9lm+/Du131r3w4713XvWxtphUzM6iKt0BwxbYu4lvevIyQK69tmHT5pA4379pfVEPpGV2NFN9t+mEl+06DpXKMorFgiirAmQPkXcfUm5mPKy5YhX/A+EtI0EKdPqauCoEgrjFMZoG02q7Fnuyr3oXbfvZUAIExW+6YCiPis+Ue1vm/WgZkdb2aPMbMXmdlFZrZjZs7MntKyz8lm9mwze4uZfcLMDuW3i83sOWZ2y8A+3MHMnmdmbzOzT5nZdWZ20MzeZ2ZPM7MDw59phiKsE6ITwuawn0NsM/z/dEiO6gEOccijD3VR1rp8VgiMtBYMjbj6MDSVwEecA6OqMJ2sDo2uNv1gUiRus1BEdnGcCbwycJ/bAk8BrgQuBt4FnAicC/wi8INm9o3OuU94tvc1wM8CnwUuAd4OnAzcG/gV4FFm9s3OuS8F9nMPEtYRkJi2s+bIxVT4D9TaK62+qQGFVNUNxALqB2M1SSv4i2vBEIH1wTe62zkYazpZFWIOJLLJcg3wUuAi4D3AI4Cndezzn2Ry+n7n3OFioZntA34feAzwHOD7PfvwXuAc59zF5YVmdjPgVcC3kglyY9TXF6UEDMRhuqyyofTN02s6yTe1NzQ1YcggLAhMEWi4LL4L32jokJJWMdrxSSeIIKshDImuxkTlrATsTS1w2Nxd2iicc5c6557gnPt959z7gY6TLzjnrnLOvbcsq/ny64Cn5g+/JaAPl1VlNV9+NfDM0PbakLAKMRJjf6kPHVATEsHrldfaJq5DKgI0yWcswfUV1UiyOlXe6lTpAGsacKWrQWLDuDG/vz7F9iSsYlJS+AJI+Qs1RpS1PuLmJztb+3biRFoLxhTXXceJ0MZAUYXmSQHGklWVp9qNrnAJ0Q8zuwlwQf7wjRHaO8DR9ITB7YFyWIUYRF0uaarH981nheZyV8GDsQp881uhf+mqPninJ3ReaQuebnUMWW0iNLrahtIBhFgHZvZS4FiyQVL3JBuQ9f/okW9qZicDL8gfngLcC7gl8Frg+TH6K2EVYgZC6rEWhFQMaNp2dmmFdnGFZokcIrK90w/6iSqEpQBAWIpGTAGNydzHH4Nt9rN/hc9LDOYMM9uTuwngnDt76s705LFkwlrwNuCxzrkv9Gjr+Ly9MhcCP+Gci/IPJGEVkzFGOkDqlwD7lLcKjdo2bT+XtEJNBYEyvuJaxUdkY82UNUBUIVxWG9vxHGTVRh+51ehvIcbHzC4Ezgnc7Xzn3EUxju+cOy7vx6nANwDPBv7VzB7pnHtzYFufypoyA04Dvh34VeCDZvYdzrn3De2vhFWIFRMSlY0lrTCyuFaJOZ3rQFGFfrIaY5DVFNFNpQMIcYRLI0RSTwfOCtwnWiH+AufcZcCFZvYe4F+BV5jZmc654OKCzjlHVjrrZWb2QeDdwMvN7G75ut5o0JUQA4ld3qqtzViXgkNnwmoajNU2oAgyuesSPK9SWGPj0Qef5zK2rE45+9pSGeOqSwqDRcX6cM6d65yzwNs/jtifT5AV/v8K4OsjtPfPwL8DdwXuOLQ9RViFGJlYs171JSQ1AJojrdAv2gqBEdc6hkZhfY7RQKdw54yZs9p57Ig/cMZOB5B0C5E0V+T3p4zQ3keHNCRhFZOgCEU9bYOvwnNTm3NfQ6d47SutsHdmrDJe4lpHk2g2iWyEiO1YogrtshoaXZ1qoJPSAYRYN2Z2LPCN+cNLI7R3M+DugAM+NrQ9pQSIxZL6gKs5iJUaAO1S1SZjXWkC4Jkq4ENxKb96G4Bv30LrqxbElNU2po6urrFCgBBrw8weY2bfWLP8FmRTs96JLI/1vZX1rzSzS8zsvMryJ5rZXWvauy3wp8CJwBucc58b2ndFWIWYgLa0gJhR1j77NKUGQL9I65F2x4y4joCvpHYRW1Zb+7NiSUztuam8lUgRM3s1cGr+8LT8/olm9vD878ucc2XJ/FbgsWb2UTIxPURWf/UeZFOwfBp4VM0AqduTDRC7eWX59wG/ZWYfAi4Bvgzcjqyu6xZwMfBjQ55jgYRVjM6S0wFCL6UvlSHSCkQT1ypjiGyfyK6PqMI4stonUppi7qoQYhTuDtyhsux2+Q3gE5V1LwGuJStj9Q3AScBB4N+A1wO/5Zy7KuD4zyVLH7g38ACyiOpVZNUB/gr4A+dclOlgJKxCRGDojFdzR1mzffpJK3RHW8FPXKsMEdkYKQcxRBWmlVUxHoqyitRwzp0euP07gHf0OM79G5a/AXhDaHt9kLCKUVlydHXpzCGt0B5thX7iWiVK/msLvqIK48lqX8aIrsYacKUKAUKIvmjQlRAT0fWlH7Mu6xD6DsQqaKrZuuc4HoOzpiakTz7Pc4isxkwFGJvUIr4akCnE+lCEVYyGoqvTEDs1INuvPdIKtEZbwS9NAHZHM4dEXfsSKs2+06tOLattpBBdXQtKCxBiHiSsQnSwhIFXU0srdKcIgH+awJFjNshjLJEdEtH1FVWYPg0AdLldCLFuJKxikaR4yc9n4FXXrFd9Bl8NYQpphXBx3dOPGtFsk9jYqQZTyWqbdPZNBUjtcv0aUJRViOlJIofVzI7Pi9m+yMwuMrMdM3Nm9pSB7T7UzN5qZleZ2dX53w+N1W/RjNIBxmEMaemKzHVJVsgUo775rT4U+aZ1t1iE9Hf/MdvJyWoXU6YDhPYz9o8zIcSySSXCeibwypgNmtmTgBcCNwBvAXaABwKvN7MnO+d+M+bxhEiBPqkBXftl+3ZHWqE7r7XAN791LmJFVAuGyOoQFF0dD0VZhZiWJCKswDXAS4EfJ5tt4VeHNGZmXw08j0xSv9k59xDn3MOBuwFfAJ5nZmcOOYZoRtHVdoZUC4DxJGRopBW6o4xlYkZbYxEzolowVFZTTwWQFAshpiAJYXXOXeqce4Jz7vedc+8ni4oO4clk0ePfdc69q3Sc/yCT4eOAJw08htggUhvQMpbE3JSdjv39LhH3EdfybSr6Htf3uc0lqz6oOsBw9ONciOlIQlhHoMhTvbBm3V/m9w+bqC8bhU7gfgyNsnYxNPIWQ1ohTFzL1EnsEJGN1V7I8xkzDWCI6G4KKQ7MFEL0J5Uc1miY2UnA7fOH76+ud859ysyuAO5gZjcPnDNXiFbGGMnf91h981n99s9krC2vtUxojmsTdZJZzoUdKzobKt1jRlaXSGpXKGKiXFYhpmF1wspRWf2ic+7ahm0+Bdwq3/Zfuxo0s4sbVp0R3r31oujqshgqrVkb7YOxqsQS1zJjphDEFlUYLqsxZDdWOsDaxFoIkS5rTAk4Ib9vO+MWIntCyzZCjEqMtIAp5MZnMFZoMfw+aQJTEprK4PMadOUHZ+0Mez/XhGRYCFEmSoTVzC4Ezgnc7Xzn3EUxjl/tTn7vPLbxwjl3dm0jWeT1LiFtrZUpo6up56ZNmRbgQ3eUdHikNWunX5oAxI24DmGMiCr4iWYMQZsyuiqOorQAIcYnVkrA6cBZgfv4X0cM45r8/niPYx8cqQ9CTEYMQS5Ep29O7O62wsQVmkVxLJEdGuENiSjHktXU8l4VARVCTEkUYXXOnRujnUh8Mr8/2cyOb8hjPa2yrRCd+Aob+EvkkKlaQ47nL5tx2snaChfXKkNFNnbqQWjqw1SRVV+GVp8QzSjKKsS4rG7QlXPuS2b2SbIBVXcH3lFeb2ankQ24+qQqBMRBg63GxVdaYxFTWrP2hotrlalzYENFFeLK6lTRVQ22EkKkyhoHXQG8Ib9/ZM26783v/3qivggxCVMO2CkGEIW02Wdw1tz06bPv6xJLVn1RdHV89ONdiPFYtLCa2SX57baVVS8EbgT+q5ndu7T9mcDT8nW/OV1P14tO0M34ColPVCuWbPjKT0gEbY3iOqaoZu3Hk9UYA63WSuoDNIUQ/iSTEmBmrwZOzR8WOaZPNLOH539f5pw7r7JbMdDrJuWFzrl/N7NfAJ4PvN3M/ha4HnggsB/4Wefcv0d+CkKMik9qQKwR/75t9Wn3aPu7hTBmykAoQwQ6NAI6taz6onSAOCiXVYhxSEZYyfJN71BZdrv8BvCJkMaccy8ws48AvwB8U774vcBznXOvG9JRkTFHdDVWxCS10lNdg69CmFtagSBxPXqsZmGKJbMxI7t9LtVPnQYA80dXN6l2rBBiPJIRVufc6T32aa2n6px7PfD6vn0SYiixxTjmAKyxpLVoG/qJa30f6kWzTmSnSDdIQVaVCpAuirIKEZ9khFUsC+Wuzkes1AAYV1pD2u/L1LmwfaOFc0RWQ1A6gBAidRY96EqINTHXDENjDMSqtr/0y8JDnsMYsqroqj8aeCXEOpCwChHAmJeCQ/CRkdCR/j4MeS5LFdchfZ4rshoiq5qKdRx0FUqIuEhYRTBznYg3IVISIg+xI2gh0jpUXJfA0KjqWLI6R2UAIYSYGwmrCEJRg/GJKRGhchl6WXpomkCK8jq0X2O93r5tj5UK0Oe9HjuNInV0vhQiHhp0JcSC8a0aEDJoKryeaiYXfash1EnNmAO12o47hFDJmjOyCpsVXd1ha7acXlUMECIOElbhjaIFGX1GvoeOsg+py5qCtBbtQ39xrR6/jr4iO2Ykd4rIo+8xNNAqTSStQgxHKQHCi7lldRPyV6dgzMvVfY4RSjmVoO7Sfd36sWS1b0pECrIaGl2dMh1ACOGHmR1vZo8xsxeZ2UVmtmNmzsye0rGf67jtC+jDHczsp8zs/5rZR/M+XGFmbzKz7xr+LI+iCKsQiTJGlBXGj7QWx4A40dYuphajKQecrSWXUyjKKkbhTOCVPfe9FriwYd2NAe38CfANwDbwT/ntDOBBwIPM7AXOuZ/t2cddSFhFJ3NHV1Nk7IL4YzOFtBbHgWnEdWyGymPsOqtlVMZKiI3kGuClwEXAe4BHAE/z3PcK59zjIvThk8AfAX/snLu2WGhm3wm8BvgZM3uTc+5vhh5IKQGiFclqPPoIz5hlrqZIDygfa8nRwrXI6iaTQlqRzqciJs65S51zT3DO/b5z7v3ADTP04Qedc79XltV8+RuAl+UPfyDGsSSsQqyIsaV108Q1Rs3ZMWU1lD7RVeWvxkXSKjaID+T3XxmjMaUEiEZ0Yk2DkFzWPoRWMChkZEhKRMqpAjGkcaoZ0RRdFUL05Hgzexpwe+AQ8H7gVc65gxGPcaf8/rMxGpOwilokq91MUd6qDyEDsAr69CumuFaZQmTHimamKqvKXU0HDcBaBWeY2cV1K5xzZ0/dmR7cCviVyrLnm9lj88v5gzCzk4Dz84evHdoeKCVALIAUcs/mJlQ2+kTehs5aFZPiUnz1NndbbfR9HdYWWVU6gB8KCogZeSXwYOC2wAnA3ckGTt0SeJWZfX2EY/wOcArwbuDVEdpThFXsRSfSdTBVpLUgRsS1i66I7Bz5sVNN4zqEvtHVJeUbCzExlw6NpJrZhcA5gbud75y7aMhxnXOPrSz6F+B8M/sU8FSyyOsD+7af14H9fuBK4NHOOde3rTISViEGMGVaQJ9c1qmlFaYR1ypLE1Xo3+eUo6siDKUGbDynA2cF7jPegAZ4DvCLwP3N7KbOuetDGzCzxwL/i6zO63c65z4aq3MSVrELRVfXxxzSCvOI6xTEuOQ9pawqupo2ktbNxTl37tx9KOOcu8rMPgecSpbj+pmQ/c3su8nqwn4Z+B7n3Ltj9k85rOIIktXp6CsDUw6ciSUsY06POiWxnseaI6treJ+F2FTM7BjgZvnDoGoBZnZ/4C/yh4+OMVFAFQmrEBtAX9mJGWVbqrim0O++75+iq8tAwQKRCA8Gjgc+4py72ncnM7sn8DrgpsATnHNNU74OQsIqAJ0wh9BXZqaOsqYgrXBUAOeWwDbG6GPf6gRTR1Ylq0KsFzN7pJl9dc3y+wF/kD/87Zr1rzSzS8zsvMrys4A3AicCT3bOvSJ+rzOUwyokqzMyRV3WMn3yWWG8Qv91Qjh1zuvY4jxEAIfI6tR1V1P+AbIElMsq+mBmrybLOQU4Lb9/opk9PP/7MudcWTIfCvylmX0Y+BhwFXAmcLd8/Z8DL6w51O3JBojdvLL8z8nKV30euKeZvaJm30ucc7/m+ZQakbAKsUCGzH7VV1phmhmqxpTYqaVqLlnty9qjqztsJZ0LLGkVPbg7cIfKstvlN4BPVNb9BZn73RP4erI6rFeSRUlf1uNy/sn5/SlAtVxWwVsBCasYxiZHV6eObqbUjyHSCtP3uY/Ezhnxm1v8NKuVEJuBc+70wO3fSCanoce5f4zjD0HCusFssqzGpk891qEMibJCHGmFaaZRrSPFS9CxRFXR1c1FUVYh6tGgKyESYC5ZiCFGY011ujRSkdWlR1f1WVIwQYg6JKwbik6I6yAlOdlU0Ygp7HPJ6tD+pxjtFkKsCwmrSJohl6yXxlyTCcS8/Lxp0daYz3WpsirGQUEFIXYjYd1AdCJMlzVIK6xfgmKL+aanAQghRBcS1g1Dsrqb2DM5zUmK0ro2cR3jOc0pq2t7f9aGztdCHEXCukHo5LcMhkhEatIK6xHXFJ+DIqvrR+dtITIkrEKsjBSlFdIUPh/GFO45Z7JK8f1IsU8pIGkVQnVYNwad8JbF0ML8c9dobaIqJClM3FBlCmlaU87q3KkwoaQ+21UTqs8qNh0J6wYgWd1MYkgrjFupoUkOpxLZqSN6MUQphqwqkimEWBoS1pUjWZ2WOWa8amOotMI04lqlTqiGSGwKgpaKrIrloiir2GQkrCtm6bI6lSANvfw+FrH6FUNaYR5xLeMbjU1BTsvEuvycoqwuLR1gDUhaxaYiYV0pS5fVJZNalBXiSSvML65VUhPUgph5kjFlNdXXS/gjaRWbiKoECJEwMeUidoRuiQNXpmCLnY14bWJHVyXSYSgoITYNCesK0YlsflK9VDqGtG6CnPkw1muh6KpoQud6sUkkIaxmdryZPcbMXmRmF5nZjpk5M3tKz/Yel+/fdPvz2M8hFXQCWx+xJWOMXMhNFtcxn3uKeauQ7g8yX1JJZ4mBzvliU0glh/VM4JUjtPsB4F9qlv/TCMeaHZ24+jPGwKsUc1kLYua0lkktv3VsxpT02LKq6KoQYsmkIqzXAC8FLgLeAzwCeFqEdl/jnLsgQjvJI1kVKbF2cR07mpxqZBWWH11dIxqEJTaBJITVOXcp8ITisZl994zdWRxrlNW1iE6sKOsYEeCxoqxl1iauU6Q9jCGriq6uH0mrWDtJ5LCK/qxRVkU9Y0jHVJG8pee3TpWjm3JkFcaLrkqo46DvA7Fmkoiwjsg9zey5wM2AzwJ/75x768x9EqI3S420QrO0phZ9XbpcV5EMbhaKtIq1snZhfWh+K3iGmb0VeJRz7vKZ+hQN/ZpeBrEHX6U6M1df5hLZ1MRUqQAiFpJWsUbWKqyXARcArwU+CuwHvh74deB+wBvM7F7OuRt9GjOzixtWnTG8q/2QrIqYFLI0RaTVlzqh7COxqYlpHUuQ1bUNttphaxGfjb5IWsXaiCKsZnYhcE7gbuc75y6Kcfwqzrk3A28uLboaeL2Z/QPwXuCewKOAPx3j+GMjWR2HMSOXS4myTpUe0BcfiV2ShIyVs6rIqhBibcSKsJ4OnBW4z+Tfis65g2b2m8CLgQfhKazOubPrlueR17vE62E3klVRMKa0QlrR1jaWJKhlliSra4uubgqKsoo1EUVYnXPnxmhnIj6c3586ay96IFldNmNMJDBmVDj1aOtSGbMSgCKrooqkVayFTSxrdXJ+f3DWXgSySbKa2qjx1BlTUvZzKPlSS0tiia+loqvLZ5O+P8R62URhfUR+/95ZeyE2kqXWsVyiaKXEFOKv6KpoQ9Iqls6ihdXMLslvt60sf5KZnVBZdhMzeybwvcA28IrpejoMnWhECija2o8pXrOxZHWK6KpEezr0XbIuzOx4M3uMmb3IzC4ysx0zc2b2lJZ9Lsi36bp9s2cfjjWz7zOz/21mbzeza/P9fzfeM81IpqyVmb2ao3mlp+X3TzSzh+d/X+acO6+yWzHQ6yaV5S8Efs3MPgR8AtgH3A34SuA64Iecc5+O1/vx0AlmfYyRywrT1WdVbqsfU8m9hE+EoJzWVXEm8MrAff4F+MOGdbcFvg04BLzPs70Tgb8I7EMvkhFW4O7AHSrLbpffIBNPX34JuA9wZ7JR/AZ8Cvg94AXOuX8f1tVpkKyKUKaUVlhOJYGpWYOsbkLu6tprsYrVcw3wUuAi4D1kKY9Pa9vBOfca4DV168zsOWTC+mrnnO84ny8Df5Qf/z1kwcHf8dw3iGSE1Tl3eo99rGH5Mwd3aGYkq+tmrCgrTDsTlqKtu5kyZUKRVdEXRVnXgXPuUuAJxWMz++6+bZmZAT+QP/yjgD5cC5xfaufOffvQxaJzWNeKZFUMZUqZUW5rxppeg02Irm46+p4RFe5PdkX7s8Bb5u1KPRLWxNj0k4hKWsVj6gjcmoQthDmEXdFVEYNN/74Ru/ih/P7PfKetnxoJa0Lo5DE/U4rAGkdgb1K0da7nKlkVMdH3jjCzfRwt+emdDjA1yeSwbjo6aYg1sfbc1rmkfApZVTrA5lF8/yivNYgz8unZ99A0nXvCfBdwc+Bi59z75+5MExLWBJCsbi5jDr4qmHIQVpk1VhKYM3qsyKoYGw3GmhYzuxA4J3C3851zF0XuSpEOkGx0FSSssyNZFVMwl7TCXslbmsCmkOIwlaxuYnRVpa12I2n15tIIkdTTOVpP3peoJ1AzuyXwYOAw8Kcx246NhHUmJKpiauaU1jJ1ApiCxKYgpnWsObK65ue2ZCSt0+CcO3fuPgCPIpt86R+cc/85d2fakLDOgGRVlJkiLaAgFWmtMrXEpiqnQqSCpHVjWEQ6AEhYJ0eyKuYmVWmt0iSVoSK7ZDldW9UKsSwkrevGzO5ENivoNvBXM3enE5W1mhDJajup1GDdhMuUS36ORTmp8s1n3dJY8nsk1sM2+/XdtV6K6OprnXNXt21oZq80s0vM7LwJ+lWLIqwToX940caUaQEFS4m0+rBkMa0yh6jOEV2VkC8LRVvTxMxeDZyaPzwtv3+imT08//sy51yTZD46v/dJB7g92QCxm9f04beBe+QPT8nvzzOzuxXbOOfu7XGMViSsEyBZFT7MJa3AasR1yUjgROpIWpPk7sAdKstul98APlG3k5l9PfDVwOeBvxnYh7sA96osu3V+i4aEdUQkqstlrujjHNIKEte5mVNWlbsqQpC0poVz7vSe+10EWMD29++zLiYS1pGQrIolInGdlrmjqnPJ6tzPWwxD0irmQIOuRkCyug7m+lJNIeIloRiXA2zP/hqn8DkTy0Xfc2JqJKyR0T+xiEEKMjG3UK0Vva7pkUqFkqWhCgJiSiSsEdE/rlgbKUQC10Qqr+WcP4hSeQ1EPPTdJ6ZAwhoJ/cOuEw2GyZBkDCMl8U/pcyXWg74DxdhIWAdymGP0jypGIyW5SEW4lkZKr9vcn6eUXgsRn8NSCjEi+nSJJFAOWTNzS0aZlCKFS0CvlRBCxEHCKkQHko696DVpJ0WxT+mHjxBChCJhFWIBpCgbqQlZKqT4uqTw+UnxdRFCLAcJqxALIQXpqJJiJHFO9FoIIcQ4SFiF8CAVEUlRWiGd12cuUhb3VD8zQggRgoRVCBGFVIVtbFJ+3qnIasqvkRBiGUhYhVgYqUhIHSlHGscg5eea8uckRVSpRIi0kbAK4UlKcpK6jKT0Wo3Bpom5EELMzXFzd0AIsU7qhO7QQifZWJqcpvSDZmmvnRAiTSSsQiyUm7LD9Qu7jFmVlxQFdumClZKsCiFELCSsYnaWlDt2gO2kJGuJ0lpm7ijs0uVUCCE2BQmrEAtn6dJaZUyJXbugphZdXfvrLYSYDgmrECJ5+qQSbJospSarQggREwmrEIGklhYA64uydrFpMtqFZFUIsXZU1kqIlSBpEUIIsVYkrEKsCEnr5pHqe77EKPiSBoAKsWlIWIUQYqGkKqtCCBEbCasQPUg5eiSJ2Qz0PgshNgkJqxArRDIjhBBiTUhYxawoZ0yIcFL/QZLyFQghxDJRWSshVkohNZtU7mrtpC6qQggxFklEWM3szmb2383s78zsk2a2Y2afNbNXmdk3DWj3oWb2VjO7ysyuzv9+aMy+i81lKVGkm7Ij0VkBeg+FEJtMEsIKvAX4NeBc4BLgNcDngfOAt5rZT4c2aGZPAl4P3Bf4f8DfA18HvD5fJ8RGIeFZJvrBIYQQ6Qjrh4AfBE5xzj3QOfco59zXAP8VMOB/m9ldfBszs68GngfsAN/snHuIc+7hwN2ALwDPM7MzIz8HIZJH8rMslvheLeXKgxBiWSQhrLmk/plz7vrK8t8D/gY4FvjegCafTJaf+7vOuXeV2vsP4FfzdYqyio1liSK0SeiHhRBC7CYJYe3gA/n9VwbsU+SpXliz7i/z+4f17pEQOUuOJkmK0kPvyfyocokQabIEYb1Tfv9Zn43N7CTg9vnD91fXO+c+BVwB3MHMbh6jg0IsGUlSGqzhPVjyDzghRNokXdbKzM7gaLT0dZ67FbL6RefctQ3bfAq4Vb7tv3r04+KGVXf+0qVX8pKzf8uza6KKw+buwmDcIn73+bGG92OJGG7uLkTBODx3F6Kwlvdjar506ZUAt5u7H0e5Ehjj+/nKEdoUXSQrrGZ2HPAKYAv4C+fcez13PSG/P9SyTSGyJ7Rs48MxN+7cePgLH/r8JQPbEfNxRn5/6ay9EEPR+7h89B4unzsD++fuRM6lcCNZwaGx2hdTEkVYzexC4JzA3c53zl3Usv5FwDcCHwWeGNKd/L7tJ3JQGMk5d3ZtI3nktWm9SB+9h+tA7+Py0Xu4fFquRk6Oc+675u6DiEusCOvpwFmB+xxoWmFmzyAraXU58CDnXEj8/Zr8/niPYx8MaFcIIYQQQsxAFGF1zp0box0AM/sJ4FnAVcCDnXMfCWzik/n9yWZ2fEMe62mVbYUQQgghRKIkNVrEzB5NlgpwCPhO59y/hLbhnPsSR0X07jXHOI1swNUnnXNX9e6sEEIIIYSYhGSE1cy+g2yQ1ZeB85xz7xzQ3Bvy+0fWrCsmIPjrAe0LIYQQQoiJSEJYzewbOFrk/1HOub/x3O+S/HbbyqoXkg0P/K9mdu/S9mcCT8vX/ebwngshhBBCiLEx5+avN2dmXwROAj4GvK1hs3c4515S2a/o/B2dcx+vrPsZ4PnADcDfAtcDDyQrufGzzrkXxOq/EEIIIYQYj1TqsJ6U398xvzXxkpZ1u3DOvcDMPgL8AvBN+eL3As91zvlOQiCEEEIIIWYmiQirEEIIIYQQTSSRwyqEEEIIIUQTElYhhBBCCJE0ElYhhBBCCJE0ElYhhBBCCJE0ElYhhBBCCJE0ElYhhBBCCJE0EtaImNmdzey/m9nfmdknzWzHzD5rZq8ys2/qbkHMjZkdb2aPMbMXmdlF+XvozOwpc/dN7MbM9pnZs8zsP8zsOjP7jJm9zMxOm7tvwg8zu6eZPSU/R346/1+7bu5+CT/M7ICZPdzMXmpmHzSzq83sWjP7gJk9w8xOmLuPYj2oDmtEzOxTwG2Bq4F/Ar4I3AU4B3BkM2z9xmwdFJ2Y2d2A99eseqpz7tcm7o5owMz2AX8H3Be4DHg7cDrw9cDngfs45y6drYPCCzN7DfDdlcU7zrl9M3RHBGJmTwD+IH94MfAh4GZk/5cnApcA93POfW6eHoo1oQhrXD4E/CBwinPugc65Rznnvgb4r4AB/9vM7jJrD0UX1wAvBX4cuAfwq/N2RzTwP8i+FN8FfHX+v3Yv4OeAU4CXzdk54c27gF8CHgZ8xcx9EeFcD/wO2f/gOc6573POPRg4i+yH/52B35ixf2JFKMI6EWb2ZuCBwAXOuWfN3R/hh5ldADwTRViTwcxuAnyObErnezjn3l9Z/wHgrsC5zrn3Tt9D0RczcyjCugrM7D7A/wN2gJs5566fuUti4SjCOh0fyO+/ctZeCLF8vpFMVi+tymrOhfn9wybrkRCiSvGdtwXccs6OiHUgYZ2OO+X3n521F0Isn6/N79/XsP59le2EENNTfOd9Gbhyzo6IdSBhnQAzOwN4aP7wdXP2RYgVcPv8/lMN6z9V2U4IMT1Pzu/f5JzbmbUnYhVIWEfGzI4DXkF2WeQvlFMnxGCKUjmHGtZfW9lOCDEhZvYdwI+QRVefPnN3xEo4bu4OpISZXUhWgiqE851zF7WsfxFZzt1HgSf27ZvwY6T3UKSF5fdNI0atYbkQYmTM7L8Af0z2f/gLzrkPdOwihBcS1t2cTlaOI4QDTSvM7BlkJa0uBx7knFMez/icTsT3UCTJNfn98Q3ri/fz4AR9EULk5JN2vAk4GXi+c+6FM3dJrAgJawnn3Lmx2jKznwCeBVwFPNg595FYbYtmYr6HIlk+md83zWh1WmU7IcTImNmtgL8lyx1/OfDz8/ZIrA3lsI6AmT2aLBXgEPCdzrl/mbdHQqyK4hLjPRrWF8s/OEFfhNh4zOxE4I1kEwW8CvhRpyLvIjIS1sjkyeavIEs2P8859855eyTE6ngn2ZWLM8zs7jXrH5nf//V0XRJiMzGzLeC1wLnAm4EfcM7dOG+vxBqRsEbEzL6Bo0XLH+Wc+5s5+yPEGslnzHlx/vDFZnYkl9XMfpZslqt3OOfeM0f/hNgUzOxY4M+ABwBvB75HM1qJsdDUrBExsy+SzcDzMeBtDZu9wzn3ksk6JYIxs1cDp+YPTwNuC/wn8Jl82WXOufPm6JvIMLN9wD8C9wIuI/uyvEP++AvAvZU3nj5m9p3sLnt0L7LqD+WqHb/snHvDpB0TXpjZk4HfyB++Gri6YdOfd85dMUmnxGrRoKu4nJTf3zG/NSFhTZu7k8lPmdvlN4BPTNsdUcU5d52ZPQB4KvCDwMOBLwJ/CDzdOfefM3ZP+HMKmaSWscqyU6brjgjk5NLfbT/iLwAkrGIQirAKIYQQQoikUQ6rEEIIIYRIGgmrEEIIIYRIGgmrEEIIIYRIGgmrEEIIIYRIGgmrEEIIIYRIGgmrEEIIIYRIGgmrEEIIIYRIGgmrEEIIIYRIGgmrEEIIIYRIGgmrEEIIIYRIGgmrEEIIIYRIGgmrEEIIIYRIGgmrEEIIIYRIGgmrEEIIIYRIGgmrEEIIIYRIGgmrEEIIIYRIGgmrEEIIIYRImv8fq2fxBqVfQw8AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "full, x,y = grid.plotter(part.V.vp[:,0])\n", "fig, ax = plt.subplots(dpi=150)\n", "\n", "plot = ax.contourf(x,y,full, levels=1000, cmap=\"jet\", vmin=-1, vmax=1)\n", "\n", "ax.set_aspect('equal')\n", "ax.set_xlim([-2,2])\n", "ax.set_ylim([-2,2])\n", "\n", "fig.colorbar(plot) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "Generate Figure 9. Difference between Fragment Density and Isolated Atomic Density. " ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "ename": "NameError", "evalue": "name 'D0_frag_a' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m----------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mD_grid\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgrid\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplotter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mD0_frag_a\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mD_vp_grid\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgrid\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplotter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mDvp_frag_a\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mfig\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0max\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msubplots\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdpi\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m150\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mNameError\u001b[0m: name 'D0_frag_a' is not defined" ] } ], "source": [ "D_grid, x, y = grid.plotter(D0_frag_a[:,0])\n", "D_vp_grid, _, _ = grid.plotter(Dvp_frag_a[:,0])\n", "\n", "fig, ax = plt.subplots(dpi=150)\n", "\n", "plot = ax.contourf(x,y, D_vp_grid - D_grid, levels=100, cmap=\"jet\", vmin=-0.15, vmax=0.15)\n", "\n", "ax.set_xlim([-2,2])\n", "ax.set_ylim([-2,2])\n", "\n", "fig.colorbar(plot)\n", "# plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "Generate Figure 11. Components of the Partition Potential" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAywAAAJCCAYAAAAiB0MDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAABcSAAAXEgFnn9JSAABf30lEQVR4nO3deZyddX33/9fnzGQhCSTBECDEGAEBAdlFhIC4VO8qVRHUu2otelt7t7a1arVa76pob5dal1qrrXv7U+tdELAKVYsVFREQwiKJYQlrZAkQEhKyzjmf3x/nzGRmMmeZ9Vxzzuv5eJzHda7r+l7X9T3MAOc93y0yE0mSJEkqolK7KyBJkiRJ9RhYJEmSJBWWgUWSJElSYRlYJEmSJBWWgUWSJElSYRlYJEmSJBWWgUWSJElSYRlYJEmSJBWWgUWSJElSYRlYJEmSJBWWgUWSJElSYRlYJEmSJBWWgUWSJElSYRlYJEmSJBWWgUWSJElSYRlYJEnTSkR8ICIyIrKFssv7y0bEeVNQPUnSBDOwSJIkSSosA4skSZKkwjKwSJIkSSosA4skSZKkwjKwSJIkSSosA4skSZKkwuptdwUkSRqriHiwSZGeKamIJGnSGFgkSdPZ/u2ugCRpctklTJI0bWVmNHoBT613bUScFBGfioibIuLxiNgSEVdHxGun8CNIkpqwhUWS1K3eDTwXuAj4PDAb+F3g6xFxaGae387KSZKqDCySpG71aeB1mbm9/0BE/ANwJfDeiPhMZj7WrspJkqrsEiZJ6kqZeeXgsFI7Vqba4jIDOLwtFZMkDWFgkSRpqCW17cNtrYUkCTCwSJI0ICKWAm8ErsnMte2ujyTJwCJJEgARsRfwbWAm8OY2V0eSVOOge0lS14uImVTHrpwIvDIzb25zlSRJNQYWSVJXi4gZwL8DLwR+PzMvbnOVJEmDRGa2uw6SJLVFRPQA3wLOBd6cmV9sc5UkScM4hkWS1JUiogT8C9Ww8ueGFUkqJruESZK61ceB1wK/AB6NiNcNO39VZt459dWSJA1mYJEkdasTa9tn117DvQEwsEhSmzmGRZIkSVJhOYZFkiRJUmEVLrBExOyIOD8ibouI7RFxf0R8pbb68Gjuc3dEZIPXEXWuK0XEn0fEryJiW0Q8HBEXRMSRE/MJJUmSJLWqUF3CImI28CPgVOAB4GfAcuBk4GHg2Zm5tsV73Q08heoMMCN5T2Y+MOyaoDoX/7nAxlpdFgFnANuB52bmNaP5TJIkSZLGrmiB5YPAX1OdseWFmbmldvztwCeAn2bmc1q8193AUzIzRvH8NwJfBm4HTs/Mh2rHzwEuBNYCR2RmX8sfSpIkSdKYFSaw1FYaXg8sAE7IzBuGnb8JOAY4KTOvb+F+dzP6wLIKOBI4OzMvGXbuO8BLgXMz89ut3lOSJEnS2BVpDMsKqmFl7fCwUnNhbfs7k/HwiHgq1bCyDbh0qp8vSZIkaU9FWofl2Np2ZZ3zK4eVa0lEvBM4BNgBrAIuzsyHGzz/lszcNVHPlyRJkjR2RQosy2rbdXXOrxtWrlV/O2z/UxHxZ5n55cl8fq172UgOo9qKc18r95EkSZKmiScDWzPzgIm8aZECy7zadmud808MK9fMfwA/Bq6nOsPYwcAbgbcCX4qIR4eNU5no59dTmjVr1t6HHHKI0yRLkiSpY6xdu5YdO3ZM+H2LFFj6B8fXmwWg5cHzAJn5Z8MOrQLeERG3Av8MfAy4ZBTPH5XMPGqk4xGx6pBDDjly1ap6DTCSJEnS9HPUUUexevXqCe9FVKRB95tr27l1zs+pbbeM8zlfojob2WG1gfatPr//+HifL0mSJKlFRWphube2rbei/dJh5cYkMysRsRZYDBwI3DWVz1djfX193HjjjQP7xx13HL29Rfo1lSRJ0lQq0jfBm2rbE+qc7z9+8wQ8a2FtO7i1pP/5R0fEjBFmCpvI56uBLVtsxJIkSVJVkbqE/RzYBBwSEcePcP7c2vZ743lIRBwFHE51cP2a/uOZeRfwa2Av4CWT9XxJkiRJrStMYMnMncBna7ufjYiBsSQR8Xaqq9xfmZm/HHT8TyJiTUR8ZPC9IuJFEXHi8GdExDHABVQH2H+p9szBPlnb/m1ELB503SuornJ/F0MH6muClUoljj766IFXqVSYX1FJkiS1QZG6hAH8DfAC4FTg9oj4GfAU4FnAo8AbhpVfRLW15MBhx58NvD8i7gHWUp3W+KlUu3X1Aj8B3jPC878CvBg4G1gTET+qPeM5wHbgdXUWldQEKZVKLFq0qN3VkCRJUkEU6s/XmbkdeC7wIapdtl4OLAf+BTg+M+9o8VY/oBo+Hqe6Mv05wKHAlcAfAM/PzD3WW8nMCvBK4B3A/cBZwDOAi4GTMvOqMX40SZIkSWMQmROy7IhaFBGrjjzySNdhkSRJHSUz8XtlZ4gIIka1BCIwsA7L6nrrEY5V0bqESZIkaZool8s8+uijbN68mZ07hw8N1nTW09PDnDlz2Geffdh7773HFGAmioFFhVIul7nnnnsG9p/ylKfQ09PTxhpJkqSRlMtl7r33XrZv397uqmgSlMtlNm/ezObNm1mwYAH7779/2yZDMrCoUDKTe+/dvTbnsmXL2lgbSZJUz6OPPsr27dvp6elh//33Z+7cuc7u2SEykx07drB582Y2bNjAxo0bmT17NgsXLmx+8SQwsEiSJGnUNm/eDMD+++/P/Pnz21wbTbQ5c+YwZ84cent7Wb9+PY899piBRYLqIK8lS5YM2ZckScWSmQNjVubOnduktKazffbZh/Xr17Njxw4ysy3fzQwsKpSenh4OO+ywdldDkiQ1MHg2MLuBdbbBY4nbFVj8DZMkSZJUWAYWSZIkSYVlYJEkSZJUWI5hUaFkJps2bRrYnz9/vgPvJUmSupiBRYVSLpe58cYbB/ZXrFhBb6+/ppIkSd3KLmGSJEnSNHL++efT09PD6tWrW77mgQceYK+99uItb3nLJNZschhYVDizZ88eeEmSJGm3hx56iL/7u7/jla98JUceeWTL1x144IG8+c1v5gtf+AK33nrrJNZw4hlYVCi9vb2ccsopAy+7g0mSJO324Q9/mC1btvCe97xn1Ne+613volKp8L73vW8SajZ5DCySJEnSNLB161b+5V/+hWOOOYZjjz121NcfdNBBPPe5z+Xiiy/moYcemoQaTg7/fC1JkqQJkX3b4fG17a7G+O1zCNE7tq7pn/vc53jLW97CW9/6Vj796U+PWOacc87hoosu4jvf+Q4vfelLW773BRdcwKZNm3jta1874vm7776bpz71qTzvec/j3//93/nQhz7EJZdcwrp163jb297Gxz/+cV7zmtfwox/9iK997Wv85V/+5Vg+4pQzsEiSJGliPL6WvHD0f/kvmjj3Jtj3qDFde/TRRwPUHRB/7bXXctFFF3HaaaeNKqwAfO973wPgzDPPHPF8/0yrs2fP5phjjqFSqXD66adz1FFH8axnPWvItZdeeqmBRZIkSeo2z3jGMwD49a9/PeL5d7/73QB87GMfG/W9r7zySmbMmFG3O1h/YLnsssv4oz/6Iz71qU8xa9asIWUOPvhgFi1axLXXXsuOHTv2OF9EjmFRofT19fHTn/504NXX19fuKkmSJLVs4cKFLFmyhHXr1rF58+Yh537wgx/w4x//mJe97GWcdtppo7rv+vXrefDBB1m+fHndkHHTTTcBcPrpp/PZz362brnDDz+cHTt2TJvZwgwsKpxKpTLwkiRJmm76u4UNbmXJTN7znvfQ09PDhz/84VHfc/369UA1ENXT38Lyd3/3d5RK9b/m77vvvgA8/PDDo65HOxhYJEmSpAk00jiWb33rW9xwww2cd955o1o/pd+mTZsA2Hvvveuev/vuu1m6dCnPfOYzG95rn332GXLPonMMiwqlp6eHk08+eci+JEnSdDJ8HMuuXbv467/+a/baay/OP//8Md1z/vz5ADz++OMjnu/vDnbGGWcQEQ3v1R9U+u9ZdLawqFAigjlz5gy8mv0LJ0mSVDTDW1i++MUvsnbtWv7sz/6Mgw46aEjZXbt2MXv2bD70oQ/xwhe+kHnz5rH//vvz/ve/f0i5xYsXA7Bhw4YRn9nfHey4445rWr/HHnsMgP3226/lz9ROBhZJkiRpAh111FGUSiVWr17NE088wYc+9CEWLlw4MEPYYKtWrWLHjh18+tOf5vWvfz0333wz73jHO/jgBz/IZZddNlBu8eLFHHDAAdxzzz1s27Ztj/v0B5bjjz++af3WrFnD7NmzOfzww8f+IaeQXcIkSZI0MfY5pLqGyXS3zyHjunyvvfbi4IMP5s477+TDH/4wDz74IB//+MdZsGDBHmVXrlwJVBeFfN7zngfAu971Lr7whS/w05/+lBe/+MUDZU8//XQuuOACbrjhBk499dQh9+nvEtashWXt2rU8+uijnHHGGdNiSmMwsEiSJGmCRO/sMS+42GmOPvpo7rjjDj72sY/x5Cc/mT/5kz8ZsdzKlSs5+eSTB8JKv1mzZpGZQ4695CUv4YILLuDHP/7xkMDS19fHqlWrOOigg1i0aFHDel1xxRUAQ4JQ0dklTIVSLpe55ZZbBl7lcrndVZIkSRq1/oH35XKZD37wg8yePXvEcitXruTEE08ccmzTpk3cdtttexx/1atexfz58/nmN7855PiaNWvYsWNHS+NXvvnNbzJjxgzOO++81j9MmxlYVCiZySOPPDLwGv6XBUmSpOnggx/8IJlJZtYNB+VymZtuummPtec++clPst9++3HWWWcNOb7XXnvxhje8gdWrVw90JYNqa05m8r3vfa9hndatW8cVV1zB2Wefzf777z+2D9YGBhZJkiSpDdasWcPWrVu57LLLuOyyy7jrrrv4yEc+wkc+8hG+9KUvMWfOnD2uec973sO8efP46Ec/OurnffzjH6dUKvHBD35wIqo/ZRzDokIplUoceuihQ/YlSZI60cqVK9l333358pe/zFve8hbuuecejj32WK644oo9BtX3W7x4Me985zs5//zzWb16dcuLUD7wwAN84Qtf4A/+4A+mzexg/QwsKpRSqcTSpUvbXQ1JkqRJt3LlSo4//nh+67d+i9tuu63l6973vvfxvve9b1TPOvDAA0ecDnk68M/XkiRJUhusXLmypYHy3c7AIkmSJE2xzOTGG280sLTALmGSJEnSFIsINm3a1O5qTAsGFhVKpVLhwQcfHNg/4IADHHgvSZLUxQwsKpRKpTJk0NnixYsNLJIkSV3Mb4KSJEmSCssWFhVKRLDvvvsO2ZckSVL3MrCoUHp6ejjmmGPaXQ1JkiQVROG6hEXE7Ig4PyJui4jtEXF/RHwlIlpeTTAiFkTEayLimxGxOiKeiIjNEXFNRLw1ImbUue5rEZENXv974j6pJEmSpGYK1cISEbOBHwGnAg8A3wGWA28AzoqIZ2fm2hZu9RfAe4EKcAPwXWA/4DTgZODciHhRZm6tc/0PgAdHOH5r659GkiSpMw3usl2pVJwgp4OVy+WB9+3qql+owAL8FdWw8gvghZm5BSAi3g58AvgK8JwW7rMF+DDwucz8Tf/BiHgacDmwAvg/teeN5KOZecUYP4MkSVJHiwhmzpzJzp07eeKJJ5g/f367q6RJ8vjjjwMwa9YsA0utm9af1nbf0h9WADLzkxHx+8AZEXFiZl7f6F6Z+dE6x2+PiHcD3wR+l/qBRW2SmezYsWNgv53/ckiSpPr23ntvHn30UR566CEA5s6da0tLh+j/PrZ582Y2bNgAwMKFC9tWn8IEFqqtHguAtZl5wwjnLwSOAX4HaBhYmriptl0yjntokpTLZa6++uqB/RUrVtDbW6RfU0mSBPCkJz2JJ554gu3bt3P//fe3uzqaRAsWLGhrK1qRvgkeW9uurHN+5bByY3VwbTvSGJV+r4iIc4Ae4C7gu5m5ZpzPlSRJ6hg9PT0sW7aMRx99lM2bN7Nz5852V0kTqKenh7lz57L33nuz9957t7XHS5ECy7Ladl2d8+uGlRurt9a232lQ5k+H7X8sIj4PvDUz+8b5fEmSpI7Q09PD4sWLWbx4MZlJZra7SpoAEVGoLvlFCizzatt6M3c9MazcqNWmJX4BsBEYaZzLDVQH/P831YB0APDbwN8AfwzsBN7W4rNW1Tl1yKgq3WV6e3s588wz210NSZI0SkX7kqvOUaSRUf2/4fWi+bj+DYiI5wB/X7v/GzNzj86Wmfn3mfnPmXl7Zm7LzLsy83PAGVTDyp9GxJPHUw9JkiRJrStSYNlc286tc35Obbulzvm6IuIY4BJgJtVuXReP5vrMvAX4D6pjWl7Q4jVHjfQCWllHRpIkSRLFCiz31rb1VrRfOqxcSyLiEKoLQS4APpCZ/zCm2sHtte2BY7xekiRJ0igVKbD0Tzd8Qp3z/cdvbvWGEbEE+C+qY1H+PjPPH3v16J98etQtPJIkSZLGpkiD7n8ObAIOiYjjR1iL5dza9nut3CwiFlJtWXkq8FVaHCxf516zgJfUdsezBoya6OvrY+XK3TNbn3DCCa7DIkmS1MUK08KSmTuBz9Z2PxsRA2NZIuLtVBeNvDIzfzno+J9ExJqI+Mjge0XEHOAy4Gjg34E/yCbz7EXE4RHxsojoGXZ8P+BbwJOptgJdNdbPqNZs3bp14CVJkqTuVrQ/Xf8N1UHtpwK3R8TPgKcAzwIeBd4wrPwi4HD2HFfyf4FTgDLQB3x5pGn2MvO8QbsHUh2Y/2hErAF+AywGTgT2pjrN8auaBR9JkiRJE6dQgSUzt0fEc4H3AK8BXg48BvwL8NeZeV+Lt+ofb9JTu0895w16fxvwaapB5xDgZGBH7fh3qY6BeazF52uMSqUSxxxzzJB9SZIkda+wwWBqRcSqI4888shVq+qtKylJkiRNP0cddRSrV69eXVvKY8L452tJkiRJhWVgkSRJklRYBhZJkiRJhVWoQfdSuVzmrrvuGth/6lOfSk9PT4MrJEmS1MkMLCqUzGTdunUD+8uXL29fZSRJktR2dgmTJEmSVFi2sKhQIoKlS5cO2ZckSVL3MrCoUHp6ejj00EPbXQ1JkiQVhF3CJEmSJBWWgUWSJElSYRlYJEmSJBWWY1hUKJVKhY0bNw7sL1iwgFLJXC1JktStDCwqlEqlws033zywv2LFCgOLJElSF/OboCRJkqTCsoVFhTNnzpx2V0GSJEkFYWBRofT29nLyySe3uxqSJEkqCLuESZIkSSosA4skSZKkwjKwSJIkSSosA4skSZKkwnLQvQqlr6+PK6+8cmB/xYoV9Pb6aypJktStbGGRJEmSVFgGFkmSJEmFZV8bFUpPTw+nnHLKkH1JkiR1LwOLCiUimD17drurIUmSpIKwS5gkSZKkwjKwSJIkSSosA4skSZKkwnIMiwqlXC6zatWqgf2jjjrKgfeSJEldzMCiQslMNmzYMGRfkiRJ3csuYZIkSZIKyxYWFUqpVOKwww4bsi9JkqTuZWBRoZRKJZYsWdLuakiSJKkg/PO1JEmSpMIysEiSJEkqLLuESV0oK33Q9wTs2gK7nqi+79sKBJR6IIa9xngsItr9USVJ0jRnYFGhVCoV7r///oH9JUuWOPB+mKz0wea7YOMa2PrQQPDIvidg19ZqCOkPI/1BZHAw2bUFKjunpq5ELcjMgN69qq+e/u3sEY4NPRcjneudPcKxoeWi5No9kiR1CgOLCqVSqXDHHXcM7B9wwAFdG1iybxtsvBU23kpu/HU1oDy2BjbdNmWBY/wSsg/KfVDeBjtGffXYntozG3rnDHrNrQWbOTBj7h7HY+D9oGtmDL9+zu7re2YT0Z2/l5IkTTUDi9RmueMxeKwaSHLjr6uhZOMa2Hw3Y//K3uXK26uvHRual2Vs/5SzZ1gA6qm1/gy8H9zyUz0eI7UI1X2/+z5R8j/VkqTu5f8FVSgRwaJFi4bsd5p8fC3c/g3y/p9Ug8m2h9pdJY1FeVut1ejRli8Zc4tR9O4ONIMDUX+3uv7wNBB6ZlVfpVlE//tBx6rvZ0PPzDrn9jzWif8uSpKmh8IFloiYDbwH+F1gGbAB+D7wvsxcN8p7LQA+AJwNHAA8CFwCvD8zN9a5pgT8GfC/gEOBLcAVtWtWj/LjaJR6eno4+uij212NCZd9W+HOi8hbvwIP/LTd1dF0k32wa3P1NdpLJ6oKpRmDgs7wcDNz5MAzQgAaCFClGdVX9O5+P/DqrfN+2GvEa2c4hkmSOkyhAkstrPwIOBV4APgOsBx4A3BWRDw7M9e2eK8nAb8AngbcSTWoHEU1jLw4Ik7JzEeHXRPA/wPOBTYClwKLgHOAl0TEczPzmvF9SnWLzISHf0ne+jW441uw6/F2V0kau8qu6mvXlnHdZio6OSYxirBTr0yd43VmyItxz65XmpCZ+YYeK+15Lkq2lkmadgoVWIC/ohpWfgG8MDO3AETE24FPAF8BntPivT5FNaxcBLw6M/tq9/oM8KfAJ4HfH3bNG6iGlduB0zPzodo15wAXAt+IiCP67yWNJLc/Uu3ytear8Ngt7a6O1IWyOjHFFE5OMZ1Gm+VIQabUA5RqISdq76O6P+R9bVvv/R7Hos410fx5devQpD5Nj7Hnc6sHd9eX2rGB+g8qQwwKfYOvGWG/xfuNXIcC3a/fkLDbwvEhZahzvIVrx/3sgl07XMM/ItQ7N5b7TfA1I50rb29Qfuwisxj/mY2IGcB6YAFwQmbeMOz8TcAxwEmZeX2Tex0A/AYoA0/uDx61c7OA+4B9gYOGnVsFHAmcnZmXDLvnd4CXAudm5rfH+DGJiFVHHnnkkatWrRrrLVRAWSnDuh9WW1Pu+Y/qX6IlSZK6yDM+UGb1A6zOzKMm8r5FamFZQTWsrB0eVmoupBpYfgdoGFiA3wZKwI8HBxKAzNwREd8F3lgr9zWAiHgq1bCyjWpXsJGe/9La88ccWNRYZrJt27aB/b322qvQ3Rdy893kmi/Dbf8KT/xm6itQmgmzFlan3Z0xrzYV77zazFW1Y71zYMY8YqBM/7nBZWozXQFkeeirUh7lscqexyo7oa82SL1vW3XK5vI26Ns+cGzwecrbh+73vzcISpLUdYoUWI6tbVfWOb9yWLnx3uuNw+7V//6WzBzpW9Fonq8xKpfLXHvttQP7K1asoLe3SL+mVVnpI6/7ANz8ian5Ej1zPiw4AhY8nVh4RPX9wqfDvOXTcoDxWCNoVvrqh5m+bdVFMge2WwcWzsz+47ue2H2uvLW2v21IWfq2GowkSSqQIn0TXFbb1psJbN2wchN9r4l8fn/3spEc0sr1Kq7c8Rh5+e/Cby6f+JvPWQILa8FkweG7g8leBxS6pWmqRKkXSvOqrUKjuW6Uz8nKrkGhp/YaHHb6tg0JOLnriWEtRltHCFXb9zw+SX19JUnqJEUKLP3fQLbWOf/EsHITfa+JfL7Gocgr2+fG28gfvLy62vx49cyCp76COOgFtZByBDFz/vjvq3GL0oxqq1aLP48xtxhlZXeL0ZAgM7i1aPvQFqRyrUvd4K5zteMM7mpX2QnlHUNflf6tLUiSpOmjSIGl///59WYBGM13grHcq9k1o1JvsNGggf0aQW9vL2eccUa7qzGiXPdf1ZaVnRvHd6NFJxKHnweH/k9i1sKJqJqmqYhSbcHHOaO7bpzPrQalndXAMzjIjBRuyoODz9DyOaT8CAGpvH3k+1RqoanSt3u65Mqu6ngnSZKGKVJg6V8RbW6d8/3/R29lEYCx3KvZNf3Hx7cIgaadzIRVnyN/8faxf6GatS887bXE4ecRT3IYlNqrGpRmV1/juc8E1adfZmV3iMlhYWbIq965vgbnht4zR3Pd8PpkpfWJJxpNVJGVCf4nKEmdqUiB5d7admmd80uHlZvoe03k89UhsrKL/Pmfw6//eQxXByx9AXH4G2H5S6srfEuqK6IEPTOrr8l+1qQ/obnMbD3cjOtYs2dUBgWoHLod8j6ByrD3WQ2atfd1ryVbON/a86j3vJbqMNIzsv8HUns/bH9g+YcR9gdfP3x/ut5PKqAiBZabatsT6pzvP37zJN2r/5qjI2LGCDOFjeb56gC5/VHyv14FD/xkdBfuvbza5euw1xPzWpqjQVIXigiIHmD6zfQ3WBHCnyZeDg8wQ9btq/O+XpkJu7adz56oa4drcK7uWokTfE29cw3Xaqxz7lMvhgfuaHDd2BQpsPwc2AQcEhHHj7AWy7m17fdauNf3gQpwekQszsz1/SdqC0f+Tu38f/Yfz8y7IuLXwNOBlwCXjOP5mubysdXk918Om+9s/aK9DyZO/0c46PnVvxRLkjRNRf+q9wMH2lYVTSelyWkhL8y3qszcCXy2tvvZiBgYSxIRb6e6aOSVmfnLQcf/JCLWRMRHht3rAeDfgJnA5yJicDD7W2A/4JuZ+eCwanyyv0xELB70nFdQXTTyLvYMMppAfX19XH311QOvvr6+Ka9D3nsZeclpowsrB55BnH0VsfS3DCuSJEkTqEgtLAB/A7wAOBW4PSJ+BjwFeBbwKPCGYeUXAYcDB45wrz8HTgHOAdZExHXAUcDRwFrgbSNc8xXgxcDZtWt+VHvGc4DtwOvqLCqpCbR9e3vWpshM+NWnyWv+klENhj3iTcRpnyGmoN+9JElStynUn4IzczvwXOBDVNdDeTmwHPgX4PjMbLlTXGY+AjwT+AeqLS1nA/OptuKcXDs//JoK8ErgHcD9wFnAM4CLgZMy86oxfjRNA3nd+8mr39l6WIkSceqniNM/b1iRJEmaJJENB9RookXEqiOPPPLIVatWtbsqhZSZbNq0aWB//vz5U7LCe957Gfn9l7Z+wcz5xAv+jVj6wsmrlCRJ0jRy1FFHsXr16tX11iMcq6J1CVOXiwgWLFgwpc/M8k7yF3/R+gXzn0a86BJiweGTVylJkiQBBhYJVv8TbLqttbIHPY94/reI2ftObp0kSZIEFGwMizTVcvsGcuWHWit85B8Tv32pYUWSJGkK2cKirpYrPwQ7HmtcKHqI0/6eOPJ/T02lJEmSNMDAokIpl8usXbt2YP+QQw6hp2dyVoHOjbfCqs83LRcnf9iwIkmS1CYGFhVKZnL//fcP7B988MGT96yr3wXZZGHKfQ6Bo/9k0uogSZKkxhzDoq6U6y6Hey9tWi6e9TGiZ9YU1EiSJEkjsYVFhRIRLFu2bMj+RMtKubpAZDMHngHLXzbhz5ckSVLrDCwqlJ6enkntBgbArV+FDb9qUiiIZ39iShatlCRJUn12CVNXyZ2Pk9e9r3nBw36fWHT85FdIkiRJDRlY1FXyxo/CtvWNC/XOJZ75wampkCRJkhoysKhr5Oa74Vd/37RcHPdOYu6Sya+QJEmSmnIMiwqlUqmwYcOGgf19992XUmlicnVe8x4o72hcaO5SOObtE/I8SZIkjZ+BRYVSqVS45ZZbBvZXrFgxIYElH/w53HlB03Jx8oeJ3jnjfp4kSZImhl3C1PEyK+Qv3tG84H7PhEP/5+RXSJIkSS2zhUWFM2/evIm94R3/Bg9f17RYdRpjM7wkSVKRGFhUKL29vZx00kkTdr/MCnnd+c0LHvwq4oBTJ+y5kiRJmhj+OVmd7aGrYfOdjcv0zCKe9ZGpqY8kSZJGxcCiznb/Fc3LPOPPib2fMulVkSRJ0ugZWNTR8oGfNC4wez/iuL+cmspIkiRp1BzDokLJTDJzYD8iiIix3au8Ax68qnGhp5xFzNxnTPeXJEnS5DOwqFDK5TJXXnnlwP6KFSvo7R3jr+nDv4TytoZFYsmZY7u3JEmSpoRdwtS57m/SHQzgwDMmvx6SJEkaMwOLOlY2G3C/zyHEvCdPSV0kSZI0NnYJU6H09PRw6qmnDtkfiyzvgId+0biQ3cEkSZIKz8CiQokIZs6cOf4brb8WytsbP+vA54z/OZIkSZpUdglTZ2pl/ZUlBhZJkqSiM7CoIzVdf2X+04i5B01NZSRJkjRmBhZ1nOzbDg9d3biQ3cEkSZKmBcewqFDK5TK/+tWvBvaf8YxnjH7g/fprmo9fsTuYJEnStGBgUaFkJhs3bhyyP2rNuoOBLSySJEnThF3C1HGy2YKR8w8j5i6ZmspIkiRpXGxhUaGUSiWOOOKIIfujkX3bYb3jVyRJkjqFgUWFUiqVOOCAA8Z+g/VXQ3lHwyKOX5EkSZo+7BKmjtK0Oxi4/ookSdI0YmBRZ3ngisbn5x9OzDlwSqoiSZKk8TOwqGNk3zZ46JrGhWxdkSRJmlYcw6JCqVQqrFu3bmB/6dKlrQ+8X381VHY2LBJLzhxH7SRJkjTVDCwqlEqlwp133jmwv2TJkpYDS95/RfNCB54xxppJkiSpHQrVJSwiTo2IyyJiQ0RsiYhrI+L3x3CfEyPiAxHxs4i4PyJ2RMR9EfH1iDimzjXLIyIbvB4c/yfUpGo24H7BEcScccxAJkmSpClXmBaWiDgbuIBqiPop8AjwfOBrEXFsZr69xfv0AtfVdh8BrgW2AscDrwVeFRGvycwL69ziIeD7Ixzf1Opn0dhFBIsXLx6y34rs2wrrr21cyO5gkiRJ004hAktELAS+CvQA52TmRbXj+wNXAm+LiO9m5o9bvOU1wIeA/8zMSu1eJeCDwHuBr0TEFZn5yAjXrsnM88b1gTRmPT09HHnkkaO/8KFfNB+/4oKRkiRJ005RuoS9CZgPfKc/rABk5kPAu2q7LbWwZGZfZp6SmZf2h5Xa8Qrw18AaYG/gJRNVebVfS+uvOH5FkiRp2ilKYDmrth2pm9alwHbgBRExezwPycwEflXbXTKee6lgHmgSWBYeSczZf2rqIkmSpAlTiC5hQP9A+JXDT2Tmzoi4BTgJOBy4aZzPOri2rTeIfv+IOB84kOq4lWuA/8jMxv2N1DYtjV+xO5gkSdK01PbAEhH7AAtqu+vqFFtHNbAsYxyBJSJWACcCOxl5YD3AEcD7hh27NyJelZlNViXUeGUmTzzxxMD+3Llzmw+8f/AqqOxqWCRcMFKSJGlaantgAeYNer+1Tpn+b7Dz6pxvqhaMvlLb/VRmPjCsyA7g88D/A35NtRvakVTHvbwY+H5EHJ+Zd7f4vFV1Th0yyqp3lXK5zHXXXTewv2LFCnp7G/+aZrPuYOD4FUmSpGlqQgJLRFwIHD3Ky16fmdcCrcxb29rctvUujugBvgk8jeo0x8NbUKgFmD8edvhq4CUR8Q3gNcBfAW8eT100CZoNuF94FLHX4sZlJEmSVEgT1cKynOr4ktGYU9tuHnbs8QZlt4zyGf2+QHVWsFuBl4xhPMqHqQaWF7V6QWYeNdLxWsvLGObt7R7NWlQGy0x4tEkvQcevSJIkTVsTElgy86RxXPt4RGyiOq3xUmD1CMWW1rb3jvb+EfFx4I3AfcBv1Vl7pZnba9sDx3CtRqG3t5cVK1a0fsHOTdD3RMMiccBp46yVJEmS2qUo0xr3/4n8hOEnImIG1e5mO6i2kLQsIt4D/AWwnmpYuW+M9VtY2461hUeTZevwoUgj2Pspk18PSZIkTYqiBJZLa9tzRzh3FjAb+FFmbm/1hhHxZqpduTYCL8rMUYWdYc6pba8fxz00GVoJLHNsGJMkSZquihJYvkR17MrLIuIV/QcjYjHwt7XdTw6/KCLW1F4HDTt+LtUZv7YAL87MG5tVICJeHxFLRzj+CuCjtd3PtfZxNGW21ltOZ5A5B0x+PSRJkjQpijCtMZm5ISLeCPw7cGFE/AR4BHgB1TVaPpOZPxrh0v6B/jP6D9RCzjeohrG7gD+MiD8c4dpLMvOSQftvBL4aEWuAu9k9rfERtfMfz8yLx/QBNXmatbDM2pfomTU1dZEkSdKEK0RgAcjMb0fEGcD/AU4BZlJdD+UfM/Oro7jVnNq1AM+ovUZyN3DJoP0vAg8DxwErgL1q+xcBn8/My0dRB41RX18f1167e9X6k08+ueGsYdkssNgdTJIkaVorTGAByMyfA789ivJ7rM9SW9hx1Ou2ZOY3qLbMqM127hzFrNPNuoTZHUySJGlaK8oYFmlsbGGRJEnqaIVqYZF6eno44YQThuw3ZAuLJElSRzOwqFAign322af1C5q0sIQtLJIkSdOaXcI0bWXfVtj1eONCBhZJkqRpzcCi6aulRSPtEiZJkjSdGVg0fbnKvSRJUsdzDIsKpVwuc/vttw/sP+1pT6s/8L6lVe4NLJIkSdOZgUWFkpk8+ODuIHLooYfWL9yshWXG3sSMeRNUM0mSJLWDXcI0beUT9zcuYOuKJEnStGcLiwqlVCqxfPnyIft1uQaLJElSxzOwqFCGB5aGXOVekiSp49klTNOXLSySJEkdz8Ci6ctV7iVJkjqegUXTUpZ3wo5HGxcysEiSJE17jmFRoVQqFR555JGB/UWLFo088H5bK2uw2CVMkiRpujOwqFAqlQqrV68e2F+xYsXIgcVV7iVJkrqCXcI0PbnKvSRJUlewhUWFs88++zQv1KyFpWcWzFwwIfWRJElS+xhYVCi9vb2ccMIJTctlC2uwRMQE1UqSJEntYpcwTU9N12CxO5gkSVInMLBoenKVe0mSpK5gYNH0ZAuLJElSV3AMiwolMymXywP7PT09I49FabrKvWuwSJIkdQIDiwqlXC5z5ZVXDuyvWLGC3t6hv6ZZKcO2hxrfyBYWSZKkjmCXME0/29dDVhqXsYVFkiSpIxhYNP24yr0kSVLXsEuYCqWnp4cVK1YM2d+DgUWSJKlrGFhUKBGxx5iVPTSbISx6YfaiiauUJEmS2sYuYZp+mq7Bsj8R/mpLkiR1Ar/VadpJ12CRJEnqGgYWTT/NWlj2coYwSZKkTuEYFhVKX18fN99888D+Mcccs+eYlqZdwmxhkSRJ6hQGFhXO448/3rhAky5hMdfAIkmS1CnsEqZpJTObzxJmC4skSVLHsIVFhVIqlTjyyCOH7A+xYwNUdja+iavcS5IkdQwDiwqlVCqxePHi+gVcNFKSJKmr2CVM04uBRZIkqasYWDS9NBu/QsBe+09JVSRJkjT5DCyaXpquwbIfUbKnoyRJUqfwm50KpVKpcO+99w7sL1u2bMjAe1e5lyRJ6i6FamGJiFMj4rKI2BARWyLi2oj4/THc57yIyAavbzW49ukRcUFEPBwR2yLiVxHxtogo1D+rTlWpVLj77rsHXpVKZWiBrfc3voEzhEmSJHWUwrSwRMTZwAVUQ9RPgUeA5wNfi4hjM/PtY7jtTcCNIxy/pk4dTgF+BMwBrgXuBs4APgmcFhGvzMwcQz00UZp2CbOFRZIkqZMUIrBExELgq0APcE5mXlQ7vj9wJfC2iPhuZv54lLe+JDM/0GIdeoGvUw0rb8/MT9WOzwN+CJwDnFerpyZJRHDAAQcM2R+iaZcwW1gkSZI6SVG6Ob0JmA98pz+sAGTmQ8C7artjaWEZjbOBQ4Cb+sNKrQ5bgLdMUR26Xk9PD0ccccTAq6enZ+BcdZX7xi0s4RgWSZKkjlKUwHJWbXvhCOcuBbYDL4iI2e2oQ2beANwJHB0RyyexDmpk12bo29q4jIFFkiSpoxQlsBxT264cfiIzdwK3ALOBw0d53xMj4uMR8c8RcX5EPKdB2WPr1WHY8WPrnNdka2nRSLuESZIkdZK2j2GJiH2ABbXddXWKrQNOApZRHUjfqrPY3XIC8L6I+Anw6lp3s8GWtVCHweU01VoJLHOXTH49JEmSNGXaHliAeYPe1+vv88QIZRt5APgA8B2qXbn2Ak4G/hZ4DnBpRDwrM8sj1GNC6hARq+qcOqSV67tVZrJ58+aB/b333nv3wPumq9wDe9nCIkmS1EkmJLBExIXA0aO87PWZeS0QTUu2VmZAZv4A+MGgQ48D342IHwPXAycCrwa+OdLlE1EHjU25XGblyt298lasWEFvb+3XtFkLy6yFRO9kDnOSJEnSVJuoFpbljH58yZzadvOwY483KLtllM8YIjO3RMRngM8CL2JoYNkCLATm1rl8VHXIzKNGOl5reTmypQpriGwWWBxwL0mS1HEmJLBk5knjuPbxiNhEdVrjpcDqEYotrW3vHetzBrm9th3+7fZeqoFlKXDzJNdBDcycOXPkE67BIkmS1HWKMIYFqgPpzwBOYFhgiYgZVLub7QBunYBnLaxth7eU3ER1BrATgMtGuO6E2nakMKMJ0tvby6mnnjrySVe5lyRJ6jpFmdb40tr23BHOnUV1SuMfZeb2CXjWObXt9a3WISKOBw4GVmfmXRNQB42FLSySJEldpyiB5UtUx668LCJe0X8wIhZTndkL4JPDL4qINbXXQcOO/1lEzBt2bEZEvB94JbAN+Nqw210M3AUcGxFvG3TdXOAf69VBU2hb48DiKveSJEmdpxBdwjJzQ0S8Efh34MLaWimPAC+gukbLZzLzRyNc2j/Qf8aw438PfDQiVgP3UG2hOQ5YAmwHXpeZvxlWh10R8TrgcuCTEfHq2rWnUx3vcgnw1fF9Uo3Lrican5/9pKmphyRJkqZMUVpYyMxvUx3H8gOq4eLFwFrgjZn51lHe7oPAlcBi4LeB51FdX+WfgeMy86I6dbgKeCbwbeBQ4GXAY8BfAOdmZmWU9dAEyaxAZWfjQr17TU1lJEmSNGUK0cLSLzN/TjVgtFp+xLVRMvP946jDKkYeS6Mp0NfXx9VXXz2wf8opp1TXYSnvaH5xadYk1kySJEntUKjAIkE1tOyhlcDSa2CRJEnqNIXpEiY1VG5hgrgeV7mXJEnqNLawqFB6eno46aSThuwDLQYWW1gkSZI6jYFFhRIRzJs3b88TrXQJs4VFkiSp49glTNODXcIkSZK6koFF04NdwiRJkrqSgUXTg13CJEmSupJjWFQo5XKZW2+9dWD/8MMPrw68t0uYJElSVzKwqFAyk/Xr1w/sH3bYYdU3fa20sNglTJIkqdPYJUzTQ8XAIkmS1I1sYVGhlEolDj744CH7APQ16RJWmkmE+VuSJKnTGFhUKKVSiWXLlu15otkYFltXJEmSOpJ/ktb00DSwOOBekiSpExlYND00m9bYwCJJktSRDCyaHuwSJkmS1JUcw6JCqVQqQ6Y1Xrx4MaVSibRLmCRJUlcysKhQKpUKa9asGdhftGhRdaawZl3Ceg0skiRJncguYZoemo5hsUuYJElSJ7KFRYUSESxYsGDIPuAYFkmSpC5lYFGh9PT0cNxxx+15wlnCJEmSupJdwjQ9OOhekiSpKxlYNCbZt5189GZy5+NT88A+u4RJkiR1I7uEqWVZ2QX3fI/89RfgNz+CrECUyCe/mDjzS8TsRZP38IpdwiRJkrqRgUVN5eZ7yDVfglu/BlsfGHayAvd+j7z4FHjZz4g5B47vWZns2rVrYH/GjBnVgfd2CZMkSepKBhaNKCtluO8ycvUX4L7vA9n4gs13kz84G37nv4neOWN+brlc5qqrrhrYX7FiBb29vS10CZs55mdKkiSpuBzDoj3k5rvJ7z2vGkDu+0+ahpV+D19H/vfvk1mZ+EpVdjY+bwuLJElSRzKwaIjcdAd58bPhwZ+P7QZ3X0xe856JrRQ0bWEJA4skSVJHskuYBuS29eR/vgS2Pzy+G938CXL+04inv2nUl/b09HDGGWcM7LtwpCRJUnezhUUA5K4t5PdfCo+vnZj7XfkWct3lo74uIiiVSgOv3YHFWcIkSZK6kYFFZGUXefmr4eHrJvCmZfLyV5OPrZ6Y+zlLmCRJUlcysHS5zCR/+odw3w9GeWU0L7JzE/n9l5LbHx1T3YawS5gkSVJXMrB0ubzufXDbv7ZWOHrhqecQL/4+cfYvoJXpizffTf7yfeOrY6YtLJIkSV3KQfddLFf/E9zwkdYKH/gc4vnfIOYcsPvY875O/vAcmk57vPZb5GmfIUo9TR/T19fHjTfeOLB/3HHH0RMtTJPca2CRJEnqRLawdKm86xLyyj9trfC+xxAvumhoWAFi+UuJU/62+fU7N8HGNS3XbcuWLQMvoHnrCkDJhSMlSZI6kYGlC+WDPyf/+3W0tCDkvGXEb3+PmDl/5PPP+HN4+pub3+fhX46mikO1ElhsYZEkSepIdgnrMrn1IfK/Xt1aCJi1kPjtS4m5S+oWiQg47TPknRfCjg31n/vwdcTh5zV9ZKlU4uijjx6y33RKY3AMiyRJUocysHSRzAp5xXmw7cHmhXtmEy+6hFj49KZFo9RL7ncSrPth/ULrW2thKZVKLFq0aMixbCVcGVgkSZI6kl3CuslNH4d1/9W8XJSqA+wPOK31ey9+ZuPzj95E9rUQPEbSUmBxWmNJkqROZGDpEvngz1ueXjhO+wdi+ctGdf/Y76QmFeiDDTeN6p4D7BImSZLUtQwsXSC3byB/9DrIcvPCx/8VceQfjv4h+zVpYYGWu4XtwS5hkiRJXatQgSUiTo2IyyJiQ0RsiYhrI+L3x3CfuyMim7zuHHbN8iblWxj4UTyZSf7kTfDEfc0LL385cdL5Y3pOzDkA5i1rXJcWAku5XObOO+8ceJXLZWilK5ldwiRJkjpSYQbdR8TZwAVUQ9RPgUeA5wNfi4hjM/Pto7jdhcCiOueeAywHflbn/EPA90c4vmkUzy+OVZ+Fe/6jebl5TyGe88XqrF9jtd8zYcu99c+3MLVxZnLvvbvvsWzZMqjYJUySJKlbFSKwRMRC4KtAD3BOZl5UO74/cCXwtoj4bmb+uJX7ZeZf1HlOCehvavj/6ly+JjPPG0X1CysfWUle/ZfNC0ZvdZD9rIXjel7sdxJ517frF9h0G7ljIzFrwehu3NdKYLGFRZIkqRMVpUvYm4D5wHf6wwpAZj4EvKu2O5oWlnqeDywB7gf+ewLuV1i5czN5+WugsrNp2Xjmh4j9Txn/Q5vNFAbw8HWN6xLBkiVLBl4R0XwMS/QQpUJkb0mSJE2wonzLO6u2vXCEc5cC24EXRMTszBzj3LgAvK62/UZmVsZxn0LLTPJnfwSP39G88NIXwrHvmJgHLzoRCCDrl3n4l7D0BXVP9/T0cNhhhw05ls1mCbM7mCRJUscqSgvLMbXtyuEnMnMncAswGzh8rA+IiL2As2u7X29QdP+IOD8ivhARH4+IcyNi5lif2xa3fhXWfqt5uTkHEs/9GtWecuMXM/eGhUc2LNPKwPs9NGthMbBIkiR1rLa3sETEPsCC2u66OsXWAScBy4AxLubBy4G9gZsz8+YG5Y4Ahi9Ycm9EvCozr2n1YRGxqs6pQ1q9x1jkIzeSP39rCyWDeN6/EnstntgK7HcSPFbvo9O0S9iImgYWx69IkiR1qiK0sMwb9H5rnTJPjFB2tH6vtq032H4H8HngTGB/qmNqng1cRjUofT8ilo/j+ZMutz9C/vAcKG9rXviE9xJLnjvhdYhm41i23k8+8ZvR3dQuYZIkSV1rQlpYIuJC4OhRXvb6zLyW6qCHpo8Yfa0GXRyxH/BbQAX45khlMvMB4I+HHb4aeElEfAN4DfBXwJtbeWZmHlWnLquAxv2mxiArfeTlvwtb7mle+MDTiRP+z0RXoarVBSSfetCIpzKTTZt2zyA9f/58slkLS6+BRZIkqVNNVJew5Yx+fMmc2nbzsGOPNyi7ZZTP6Pe7VD/rf2Xm/WO4/sNUA8uLxvj8SZfX/CXc38Ksz7OeRDzv65M3q9a+z4DSzIazk+XDvySe+vIRz5XLZW688caB/RUrVlBqFlhKdgmTJEnqVBPSJSwzT8rMGOXritq1j7N7UcaldR7Rf7zBqoQN9c8O1miwfSO317YHjvH6SZW3fR1+9fctlY3nfpWYO3LrxkSInpmw6LjGhVpYQHKIZl3Ceg0skiRJnaoIY1hg90D6E4afiIgZVLub7QBuHe2NI+Iw4JlUx8dc1KR4Pf0rKo61hWfS5MPXkz/7360VPvadxLIXT26FAPY7ufH59dfRaFbp2bNnD7wAx7BIkiR1sbbPElZzKXAGcC57toKcRXVK48vGuAZLf+vKxZk51sBxTm17/RivnxS5bT35w3Obz6IFsPSFxDP/ZvIrRXXgfTaYKIxdj8Om22DBEXuc6u3t5ZRThi5iWXGWMEmSpK5VlBaWL1Edu/KyiHhF/8GIWAz8bW33k8Mviog1tVejPk6vrW3rzQ7Wf6/XR8QeXdJq9flobfdzje4xlbKyi7z81fDEfc0L73MI8fxvEKWeya8YVKc2bmb9KKY37nMdFkmSpG5ViMCSmRuAN1KdxevCiPhxRFxAtQvYocBnMvNHI1x6eO01Y6T7RsSpwMHAg8DlTarxRuCeiFgVEZdGxLcj4tfAt6mu3/LxzLx4DB9vUuQv/gIe+Fnzgr1ziRd+m5i1sHnZiTL/aTBzfsMiOZpxLBW7hEmSJHWronQJIzO/HRFnAP8HOAWYCfwa+MfM/OoYb9vfHezfMrPcpOwXgYeB44AVwF61/YuAz2dms8AzZfLWr8Gqf2ypbDz3a8S+o51xenwiSuR+J8FvRsqYNeuvbf2GrnQvSZLUtQoTWAAy8+fAb4+ifMP1WTLzj9lzbZV6Zb8BfKPVZ7dLPngV+bOWPhIc/1fEU8+e3ArV0yywPHoTWd5ZnVWsmaZdwhzDIkmS1KkKFVjUWN79XfK/X9twjZMBy15CnPSBSa9TPbH4ZLJRgcpO2HDzHuNd+vr6uOqqqwb2Tz31VEp2CZMkSepahRjDoubyls+SP3wF9G1tXnj+YcTz/pWINv54W1nx/pEbRzxcqVQGXgD0NQsstrBIkiR1KgNLwWWlTOUX7yCv+nNo3GZRNWPv6iD7JoPeJ1vMXQJ7HdC40Lb1rd3MaY0lSZK6ll3CCiz7tpL//Xq4+5KWr4nn/iux8OmTV6nRmHMgbHuw7uncsYHhg5B6eno4+eSTh+xnk4Ujwy5hkiRJHcvAUlC5bT35/ZfBKKb/jRPfTyz/nUms1SjNbjKV8o7H9jgUEcyZM2fIsXSWMEmSpK5lYCmg3LiG/M/fgc13tX7R014HJ7x38io1FrP2bXx+hMAyIruESZIkdS3HsBRIVvqqM4F95/TRhZVj/4I48yvtHWQ/kqaBZUNr92nSJcwWFkmSpM5lC0ub5a4nYN1/kXd/B+69tPUv8QBRIk77B+LIP5y8Co7HrAWNz09UC0uvgUWSJKlTGVjaobKTXPPVakj5zeXNv5CPpHcu8YJ/I5a9eOLrN0Fi1r6N5zUbIZyVy2V+/etfD+wfcfjTKGW58YNKdgmTJEnqVAaWdth0B/nTPxj79XMOJP7HfxCLjp+4Ok2GMYxhyUweeeSR3fuHPLn5c3oNLJIkSZ3KwDLdLDya+O3vEvNa+CLfbrOazBJW3k72bSN692pYpinHsEiSJHUsA8t0ctDzid/697YvCtmyZoEFqt3Ceg8a2C2VShx66KG793Nn83s4S5gkSVLHMrBMF4edR5zxeaI0o901aV2zLmFQ7RY2d2hgWbp06cB+Pr628TgYsIVFkiSpgxlYiq5nFnHi++HYdxIxfF34gmu1haWRZlMag4FFkiSpgxlYimqfQ2D5S4mj/5SYt6zdtRmbVltYGmlpDItdwiRJkjqVgaVI9juJeMpLYfnLYOGR069FZbjeOVCaCZUG41CaBZY+B91LkiR1MwNLO5VmwJIzieUvg6f8DjFoLEcniAhy1r6w7cH6hYZ1CatUKjz44O7y+1e20zS2GVgkSZI6loGlHeYcQLzwn2HJc6bPjF9jNWthw8CS2zcMCSSVSoXbbrttYH+/ZdvoafYMA4skSVLHMrC0w6x9ieUvbXctpkazgffNuoRVWhl07xgWSZKkTmVg0eQa5Wr3EcG+++6+JsoNupNVS1S71kmSJKkjGVg0uZq2sAwdw9LT08MxxxwzsJ+33tB4HZae2dN/cgJJkiTVVWp3BdThxtslrNm0xnYHkyRJ6mgGFk2qmD26LmF7aLZwpAPuJUmSOpqBRZNr5ui6hO2hWQtLr4FFkiSpkzmGRZOrWQvLzo1kpUyUqpMXZyY7duxuVZnZt63x9SW7hEmSJHUyA4smV7MxLAA7Nw0Em3K5zNVXXz1w6tRZOxv/ktrCIkmS1NHsEqbJ1WxaY2jcLcxB95IkSV3NwKLJ1UoLS8PA0mzQvYFFkiSpk9klTJNrlC0svb29nHnmmQP7lZ98o/G1zhImSZLU0Wxh0eSauaB5mR0b659r2iXMwCJJktTJDCyaVFHqgZnzGxdq1CWszzEskiRJ3czAosnXrFvYuAbd28IiSZLUyQwsmnxNAks2Wu2+4kr3kiRJ3cxB95p8sxY0Pj8osPT19bFy5cqB/eN27mj8S2qXMEmSpI5mYNHka9YlbPvQLmFbt27dvVPe2fhaA4skSVJHs0uYJt+4xrDYJUySJKmb2cKiydesS9jOjQNvS6USxxxzzO79H2xreGkYWCRJkjqagUWTLmbtSzYqMKhLWKlUYt99d7fIVCqNA4tdwiRJkjqbXcI0+VroEpZZJ9LYJUySJKmrFSKwRMTciPi9iPiHiLg2InZEREbEu8d537Mi4icRsSkiHq+9P6vJNU+PiAsi4uGI2BYRv4qIt0VEIf5ZTUuzmwSWyk4o12lJabYOS6+BRZIkqZMVpUvY04B/ncgbRsSfAX8P9AGXAzuAFwLfjYi3ZuZnRrjmFOBHwBzgWuBu4Azgk8BpEfHKrNsUoLpmLmheZvsGmDdnz+PNAkvJLmGSJEmdrCiBZTPwZaoh4ZfAOcB7x3qziDgM+ATVkPLczPzFoONXAZ+IiP/MzNsHXdMLfJ1qWHl7Zn6qdnwe8MNanc4DvjrWenWtZi0sUJ0pbN5SyuUyd911FwCZFZaXy/REg+tsYZEkSepohejmlJlrM/NNmfmFzLyBaqvIeLyVahj7p/6wUnvObcD/rZ37s2HXnA0cAtzUH1Zq12wB3lLbffs469Wdmo1hgYHFIzOTdevWVV/33UPSKK3goHtJkqQOV4jAMgn6x6lcOMK5C2rb32n1mlqIuhM4OiKWT0QFu8qshc3LDFrtfkClhdxqYJEkSepoHRdYImIBsKy2e8Pw85m5DngEeEpEzB906tjadmWdW68cVk6t6tmrebCoLR4ZESxdurT6OvBJROMJkZ0lTJIkqcMVZQzLROoPK49l5hN1yqwDFtXK/mrYdesaXDO4nFoUEeSsfWHrA/UL1QJLT08Phx56KAC5+W4yKo1vbmCRJEnqaJ0YWObVtlsblOkPMvMGHWt23UjX1BURq+qcOqSV6zvOrIUNA0vueGzP0SrNZggDu4RJkiR1uAkJLBFxIXD0KC97fWZeOxHPH16d2rZRX6JGI7nrXddk9LcaajaOZaQxLM0WjQRbWCRJkjrcRLWwLAcOH+U1Iyy6MSE217ZzW3j2lkHHtgALG1w30jV1ZeZRIx2vtbwc2co9OkoLq93voaUWFgOLJElSJ5uQwJKZJ03EfSbIvbXtwoiYW2ccy9JhZfvfL6ydu7nFa9SqpoGl2sJSqVTYuHEjAPnoBuZnUIoGjWV2CZMkSepoHTdLWGZuZHeoOH74+YhYSnXA/b2ZuWnQqZtq2xPq3Lr/+EhhRs3MWtD4/KDAcvPNN1dft/2GSrNfUVtYJEmSOlrHBZaaS2vbc0c498ra9nutXhMRxwMHA6sz864JqWGXibF0Ccty8xsbWCRJkjratA4sEbGm9jpo2Km/B8rA/46IUwaVfxrw3tq5zwy75mLgLuDYiHjboGvmAv9Y2/3kBH+E7tFilzCAOXPmVF8zW7hvTyuFJEmSNF0VZlrjiLgYOLC22z9e5I8j4uW19w9k5tnDLusf6D9j8MHMvDUi3kk1YPwsIv4L2Am8ENgLeHtm3jrsml0R8TrgcuCTEfFq4B7g9Fq9LgG+Oq4P2c2azRK2cxNZ6aO3t5eTTz4ZgLztVnJdg1aW0kwipnXmliRJUhOFCSxUx5s8ZdixJ9deUA0PLcvMT0XEHcA7qYYOgOuBj2fmf9S55qqIeCZwPnAmcBywFvgE8OnMbLKKoepqFlgAdm6E2Yt27zeb1tjuYJIkSR2vMIElM5eP4ZqGa6Nk5neB747ynqsYeeyLxqNZlzCA7RuGBZYm0xr3GlgkSZI6nf1pNDVaamEZtnhks8BSckpjSZKkTmdg0dRotYVlsGZdwmxhkSRJ6niF6RKmDjdzPhBAg0UgdzxGX18fV155JQD5m52clj30Rp2B945hkSRJ6ni2sGhKRKmn5cUjB2Rf4/Kuci9JktTxDCyaOjObjGMZvnhkpcnCkQYWSZKkjmeXME2d2fvC5jvrns4dj9HT08Mpp1TX+qyUv0XPHQ1Ci13CJEmSOp6BRVOn2UxhOzYQEcyeXQ0ildhWHfZSjy0skiRJHc8uYZo6TbuEDRvDUnHhSEmSpG5nYNHUmd1kauPhY1j6mqzDYmCRJEnqeAYWTZ2mXcJGuXCkXcIkSZI6nmNYNGVi5vxGq7DAricol8usWrUKgMrDCzgqS/REZeTytrBIkiR1PAOLpk5pRuPzlV1kJhs2VLuG5bYZZKnBqHtbWCRJkjqeXcI0dVoILEO4cKQkSVLXs4VFU6c0s/H5yi5KpRKHHXZYdffueyntqNMdDAi7hEmSJHU8A4umTtMWlp2USiWWLFlS3Z35IOxsMOrFwCJJktTx7BKmqTPaLmHOEiZJktT1DCyaOs0CS5bJHNSi0jSw2MIiSZLU6Qwsmjo9TcawwNBWlnKTle57DSySJEmdzjEsmjql5r9ulb7tPPDAejKT3PYklsy4n1LUGcdiC4skSVLHM7Bo6jTrEgZU+nZwxx13kJU+2HEIB8x4kBLlkQs7hkWSJKnj2SVMU6eFwDLQJSzrhJTBDCySJEkdzxYWTZ0WAktkH4sWLSJ3biJ7HyVwWmNJkqRuZmDR1Gm2cCTQExWOPvpocsu95HWrmhS2hUWSJKnT2SVMU6eVLmHlnbVtkxnCwBYWSZKkLmBg0dQZzRiWZmuwgIFFkiSpCxhYNHVGE1j6WgksdgmTJEnqdAYWTZ0WxrBkeSdbt25l6xOb2VrZi2ww5t4WFkmSpM7noHtNnRZaWMq7dnDttdeSj98NTzyT0+b9nN6667AYWCRJkjqdLSyaOqPpElbpa17WLmGSJEkdz8CiqdNiYCmVSpQoU6LSuKyBRZIkqePZJUxTp4XA0lsqc8YZZ5B3PECuv7Jh2Sj56ytJktTpbGHR1OlpPuh+d1ewRqPtgfBXV5IkqRv4rU9Tp6UuYbWFI7NJdzB/dSVJkrqC3/o0ZSJKzVtG+gfdN21hiQmpkyRJkorNwKKp1ayVpT+wNGthsUuYJElSV3DUsqZWaSaUd9Q93bdrJ9dffTW5fiM8cTInzrme3hhpHRZbWCRJkrqBgUVTq4UWlu3bt5M7y1BpsDCkLSySJEldwW99mlrNAku5Nui+2RgWW1gkSZK6gi0smlpNAksPuzjuuOPItbeS62+ih5G6g2ELiyRJUpcwsGhqNQkskX0sWLCAnNND9m5qVHJi6yVJkqRCKsSfqSNibkT8XkT8Q0RcGxE7IiIj4t1jvN+JEfGBiPhZRNxfu999EfH1iDimzjXLa8+s93pwfJ9SQHXQfSMtT2tciF9dSZIkTbKitLA8DfjXibhRRPQC19V2HwGuBbYCxwOvBV4VEa/JzAvr3OIh4PsjHG/05361qkkLS1Z2VttOmk5rbAuLJElSNyhKYNkMfJlquPglcA7w3nHc7xrgQ8B/Zla/+UZECfhg7b5fiYgrMvOREa5dk5nnjePZaqTVdViaDrq3hUWSJKkbFOJbX2auzcw3ZeYXMvMGoG8c9+rLzFMy89L+sFI7XgH+GlgD7A28ZNwV1+iVGmfkct8ubrvtNm77zTZu2/40ylnnV9QWFkmSpK5QiMAyVTIzgV/Vdpe0sy5dq1mXsHIf999/P/c/tosHdh1I1htc7xgWSZKkrlCULmFT6eDatt4g+v0j4nzgQKrjVq4B/iMzd9Ypr9HomaBB984SJkmS1BW6KrBExArgRGAnIw+sBzgCeN+wY/dGxKsy85pRPGtVnVOHtHqPjtRsWuPKTpYtX0aWrycfuo+oF1xsYZEkSeoKXfOtLyL2Ab5S2/1UZj4wrMgO4PPAmcD+wHzg2cBlwDLg+xGxfEoq28laWDjy4IMP5uD9ejh41l30RL3ZwmxhkSRJ6gYT0sISERcCR4/ystdn5rUT8fxmIqIH+CbV6ZOvZc8WFGoB5o+HHb4aeElEfAN4DfBXwJtbeWZmHlWnLquAI1uufKeZqFnCbGGRJEnqChPVJWw5cPgor5kzQc9uxReozgp2K/CSMYxH+TDVwPKiia5Y12l14chm67DYwiJJktQVJiSwZOZJE3GfyRARHwfeCNwH/FadtVeaub22PXDCKtatmraw9GdJW1gkSZLU4YPuI+I9wF8A66mGlfvGeKuFte2WCalYN2sSWCrlXWx45BHy8T6y70ns27OBUowQXlyHRZIkqSt07J+pI+LNVLtybQRelJm3juN259S214+3Xl2vaWDp45ZbbuGW3/SxattRVOr+inbsr64kSZIGmdbf+iJiTe110LDj51Kd8WsL8OLMvLGFe70+IpaOcPwVwEdru58bf627XNMuYX3VbTbrEmYLiyRJUjcoTJewiLiY3WNE+oPDH0fEy2vvH8jMs4dd1j/Qf+BbcEQsBr5BNYzdBfxhRPzhCI+8JDMvGbT/RuCrEbEGuBvYTnU2ryNq5z+emReP8mNpuBbGsMybN4+cBZQa9MBzDIskSVJXKExgAY4HnjLs2JNrL4B7WrzPHKB/Kqpn1F4juRu4ZND+F4GHgeOAFcBetf2LgM9n5uUtPl+NNAksvezkpJNOIkvfJx9Z2aCkLSySJEndoDCBJTOXj+GaPb61ZubdjOHbbGZ+g2rLjCZTq+uwNO0SZguLJElSN/Bbn6ZWi4ElXYdFkiRJGFg0xaKnxYUjXYdFkiRJGFg01Zq0sGTfTiqVCpVyhUpGg55htrBIkiR1g8KMYVGXaBJYyuUKV/30p+RvAraczmnzfk4v5T0L2sIiSZLUFfzWp6nV6qD7pl3CbGGRJEnqBgYWTa1mgSVbDCz+6kqSJHUFu4RpapUaD7rvqWzn1FNPpfLL78PmX9AzUncwsIVFkiSpSxhYNLWatLBE7mTmzJlUehJKuxqVnNh6SZIkqZDsV6Op1bRLWJnMBJqsw2ILiyRJUlcwsGhqNQssUB1432yle1tYJEmSuoKBRVOrp9XA0qyFxV9dSZKkbuAYFk2tZuuwZIlbbrwR7p8BW4/h6L1uoSdGCC92CZMkSeoKBhZNrWYr3RNs3LgRtgaUF5B1u37ZwiJJktQN/NanqdXKGJasM5XxYLawSJIkdQVbWDS1mgSWEhWOOGQpWd4Om2+lVG+2MMewSJIkdQUDi6ZWk4UjS5EcsGhv8oE+mPFQg5K2sEiSJHUD/0ytqdVKl7DyzubTGtvCIkmS1BX81qep1fI6LE2mNbaFRZIkqSsYWDS1Wg0s2MIiSZIkx7BoqjUZw1LJ4De/WU8+1gs7n8zSGesoxUjhxRYWSZKkbmBg0dRq0sJSocSd6x6Gx2bBjqeyZMb9lBhhmmNbWCRJkrqC3/o0tVpeh6VZlzBbWCRJkrqBLSyaWk0CS5AsXjCL3LETNj1M1A0uZm1JkqRuYGDR1GoSWHqiwpHL9iHLW+CxX9cvaAuLJElSV/DP1JpaLU9r3KRLmL+6kiRJXcFvfZpSUeppPmC+shNosg6LLSySJEldwcCiqdeslaWVFhZnCZMkSeoKfuvT1GsQWDJhyxPb2bIj2FKe2yC32MIiSZLUDQwsmnoNFo8s08N1dzzO9Q8u4PqtJ1KmZ+SCtrBIkiR1Bb/1aeo17RJWbmHQvS0skiRJ3cBpjTX1mgSW3lIFShWIvvqFbGGRJEnqCgYWTb0GgaU3yqw4NMiH18OuqxrcxBYWSZKkbuCfqTX1WpklrO4K9zW2sEiSJHUFv/Vp6jUYdA+QlV2QrsMiSZIkA4vaoWkLy05XupckSRLgtz61Q6nJ0KnKLlzpXpIkSeCge7VDgxaWvuzhl3f1wvbFsOUUnjn3l/RGec+CjmGRJEnqCgYWTb2exmNYdu6qQLkE2aicLSySJEndwD9Ta+o1G8OSZZwlTJIkSWALi9qhQWDpoczx+2+E7Y9A3w30MEJ3MMAWFkmSpO5QiD9TR8TciPi9iPiHiLg2InZEREbEu8d4v/Nq19d7favBtU+PiAsi4uGI2BYRv4qIt0X4J/0J0yCwRMA+M7azz8wd7NOzuf7Yen8ckiRJXaEoLSxPA/51Eu57E3DjCMevGalwRJwC/AiYA1wL3A2cAXwSOC0iXpnZdL5dNdPKwpHN1mGxhUWSJKkrFCWwbAa+TDUk/BI4B3jvBNz3ksz8QCsFI6IX+DrVsPL2zPxU7fg84Ie1Op0HfHUC6tXdmiwc6Ur3kiRJ6leIb32ZuTYz35SZX8jMG4C+NlTjbOAQ4Kb+sFKr2xbgLbXdt7ehXp2npYUjXYdFkiRJBQksBXFWbXvh8BO1EHUncHRELJ/KSnWkBoGlnCXWbNibNRufxJrth1POer+i/upKkiR1g6J0CZssJ0bEx4F9gAeB/87Mn9Qpe2xtu7LO+ZXAwbVyd09kJbtOg8CSBA89sVd1Z9f+HDrrjpEL2sIiSZLUFTo9sJzF7pYTgPdFxE+AV2fmQ8PKLqtt19W517ph5RqKiFV1Th2xdu1ajjrqqFZu05m2Pgg7Rp6uOKmwlUuqO5VdzCntIkYazzLr6zDn8smroyRJkkZl7dq1AE+e6Pt2amB5APgA8B2qXbn2Ak4G/hZ4DnBpRDwrMwd/a55X226tc88nhpUbq9KOHTsqq1evXjPO+3SoBDa1UG5D7TVuh9S2ayfiZho3fx7F4c+iWPx5FIs/j+LwZ1EsR1D93j2hJiSwRMSFwNGjvOz1mXntRDx/uMz8AfCDQYceB74bET8GrgdOBF4NfHOky+vcdlR9kDJzxCaU/paXeuc1tfx5FIs/j+LwZ1Es/jyKxZ9HcfizKJYGPYzGZaJaWJYDh4/ymjkT9OyWZeaWiPgM8FngRQwNLFuAhcDcOpfPGVROkiRJ0hSYkMCSmSdNxH2myO217YHDjt9LNbAsBW4e4bqlg8pJkiRJmgLdODfswtp2eEvJTbXtCXWu6z8+UpiRJEmSNAm6MbCcU9teP+z4pbXtucMviIjjqU5pvDoz75rEukmSJEkaZFoHlohYU3sdNOz4n0XEvGHHZkTE+4FXAtuArw273cXAXcCxEfG2QdfNBf6xtvvJCf4IkiRJkhqIzHqTYk2tiLiY3eNKlgIHAfcB99eOPZCZZw+7pr/yT83Mu4cd3wasBu4BZgPHAUuA7cBrM/OiEepwKnA51enYrqlde3qtXpcA52RmZXyfVJIkSVKrihRY7gae0qDIPZm5fNg19QLL+cCzqc4FvYjqlMTrgB8Bn8rMWxvU4yjgfOBMqmuurAW+Anx62LotkiRJkiZZYQKLJEmSJA03rcewSJIkSepsBhZJkiRJhWVgkSRJklRYBhZJkiRJhWVgkSRJklRYBpYpEhGzI+L8iLgtIrZHxP0R8ZWIWNruunWbiDgxIt4dERdFxG8iIiNie7vr1Y0iYk5EvDwivhwRN0fE4xHxRETcFBHvG74ArCZXRLy99u/F7RGxKSJ2RMQ9EfEvtSnf1SYRsW9ErK/992pNu+vTjSLiito//3qv/9HuOnabiDggIj5V+261LSI2RMT1EfG37a5bt4iIM5v8e9H/et+4nuO0xpMvImZTXQPmVOAB4GfAcuBk4GHg2Zm5tm0V7DIRcQnwsmGHd2Tm7DZUp6tFxJuAL9Z2V1Fd7HUfqv+u7A2sAZ6TmevbU8PuEhGPAHOBm4Hf1A4fBRwG7ARenpn/2abqdbWI+Brweqrrit2amUe0t0bdJyKuAJ4DfBvYMkKRT2Tmr6a0Ul0sIp4NXAYsoPr/jluo/n/jSGBpZva2r3bdIyKOAN5d53QP8Lra++dl5o/H/BwDy+SLiA8Cfw38AnhhZm6pHX878Angp5n5nDZWsatExF8Cc4Bf1l4PYmBpi4h4PXAK1QVdbx90/EDgUuB44N8y8zVtqmJXiYjTgOszc/uw438EfA64H1jmIrpTKyKeD1wOfAF4MwaWthgUWIYsVq2pFxFLqP6Raxbw2sy8eNj5kzPz2rZUTgMi4rephsr7gOWZWRnzvQwskysiZgDrqf4F4ITMvGHY+ZuAY4CTMvP6qa+hIiIxsBRO7a9nVwE7gH0yc2ebq9TVIuJ24FDgqMxc3e76dIuI2Itqi9dO4OXAbRhY2sLAUhwR8a/A7wF/mpmfbXd9NLKI+AbwGuCjmfme8dzLMSyTbwXVsLJ2eFipubC2/Z0pq5E0PdxU284CntTOigiA/lYVg+PUej9wCPBHwK4210Vqu4hYCLwK2AR8qc3VUR0RMZfd3e+/Pt772b9v8h1b266sc37lsHKSqg6ubXcBG9pZkW5X67p3ONW/7t/Z5up0jYg4BngH8NXM/GlELG9zlVT1vyLiSUCF6r8Tl2TmvW2uUzc5jeofsi4HdkXEuVT/ODyD6rjHf8/Mh9pYP1W9guqYyBsyc9V4b2ZgmXzLatt1dc6vG1ZOUtVba9vvZ+aOttaky0TEO6kOtp8LPL32/n7gNePpg6zWRUSJ6oQUG4F3tbc2Gub/DNv/u4j4UGZ+qC216T79MxY+RHUSo2cPO/+RiHhDZl4wtdXSMP2D7f+/ibiZXcImX/+0rFvrnH9iWDmp60XEi4H/RbV15a/bXJ1u9CLg94FzqX45uI9qWHGc3dT5U6ozSb4zMx9td2UEwE+pjps4hOrELYcD7wX6gA9GxFsbXKuJs7C2fT3VMcD/C9gPeCrwSap/aPl6rYVSbRARBwDPp9qV+N8m4p4GlskXtW292Q2iznGpK0XE06n2dw2qX9ZuanKJJlhmviAzg+oXgzOAW4ErIuK97a1Zd4iIJwN/A/wkM7/W5uqoJjPfl5lfz8w7M3NbZt6WmR+mOhkCwPm1SRI0uXpq217g7Zn5lcx8JDPvzsx3UB0bPBNbJtvpNVR/Tv+VmQ9OxA0NLJNvc207t875ObXtSHO6S12ltpDq96l+Uf5kZv59m6vU1TJzY2b+DHgxcD3woYh4Zpur1Q0+R/UL1x+1uyJqLjN/CFwHzKc6TbsmV//3qgrwLyOc/0pte+aU1EYjmdDuYOAYlqnQPxCv3or2S4eVk7pSRCwC/ovqeK6vAn/R3hqpX2buioj/B5xIdUbDX7a5Sp3uLKpjVz4fMaQRvn/q9WW1KXYBzupf20ttdTtwEnBguyvSBe6ubR+sM76x//ziKamNhqj1kjie6h/iL5mo+xpYJl9/d5YT6pzvP37zFNRFKqSI2Bv4T+AI4CLgD9JFoormkdp2v7bWonssoLrmx0j2GnTO/48XQ/+4CsPj5OtfImJhRMQI/6/onwbfn0V7/F5te1Fm1hu/PWp2CZt8P6c6V/ghEXH8COfPrW2/N3VVkoojImYB36H618kfAL/rSuqF1P8FeW1ba9EFMjNGelEdVAzVhSP7j29sY1UFRMR+wOm13XpLGGiCZOavgLuoBvdnjVDkzNrWn8UUi2qT8GtquxPWHQwMLJOutjp3/yqsn60tpANARLyd6gwXV2amXSzUdSKih+oMIs+lOj3lK1zRvj0i4vSIeHVE9A47PiMi/pTqX822Af+vLRWU2igiTomI58awPnq1tXEupjpO9T8ys94SBppYH6ttP1PrTgxARJxIde0igH+a8lrpdOApVKfB/++JvLFNyVPjb4AXAKcCt0fEz6j+QJ8FPAq8oY116zoR8RL2nCp3ZkRcPWj/Q5l56RRWq1v9CXB27f0jwOeGfR/o9xeZ+chIJzRhDqE6duiRiLie6n+bFgHPoNovfztwXmbe174qSm1zBNV/Px6IiNuAB6mOQT2R6tiiVcAftK96XeeLVKfNfSVwa0RcRXV5iFOpTljxxcy8sI3161b9g+2/MdFrdhlYpkBmbo+I5wLvodpU9nLgMaqzW/y1XwCm3H7s2Ywcw47ZT39qLBz0/uy6peAD7B5DocnxE+DDVLt+HUM1rOykOoD1QuAzmXlH22ontdc1wOep/n/iSKqrrT8B3AhcAHw+M7e1rXZdJjMrEfE/gSuANwHPo7p8xHXAP2XmhHZHUnO17t39wxy+PuH3d1yrJEmSpKJyDIskSZKkwjKwSJIkSSosA4skSZKkwjKwSJIkSSosA4skSZKkwjKwSJIkSSosA4skSZKkwjKwSJIkSSosA4skSZKkwjKwSJIkSSosA4skSZKkwjKwSJIkSSosA4skSZKkwjKwSJIkSSosA4skSZKkwjKwSJI6SkT8v4jIiPjYCOeOiIitEfF4RBzcjvpJkkYnMrPddZAkacJExELgZmAJ8PzMvKJ2fAZwDXA88IbM/Fq76ihJap0tLJKkjpKZjwGvr+3+a0QsqL3/G6ph5ULDiiRNH7awSJI6UkT8LfBO4N+ALwA/Ah4EnpGZG9pZN0lS6wwskqSOFBEzgauptqo8DuwNvDAzL29rxSRJo2KXMElSR8rMncB5td19gM8aViRp+jGwSJI62asHvT8+Ivz/niRNM/6HW5LUkSLidODdwP3AfwMravuSpGnEMSySpI4TEftQndp4GfA/gF/VXvsAp2bmdW2sniRpFGxhkSR1os8BTwH+ITN/mJkPAH8AzAC+ERFz2lo7SVLLDCySpI4SEf8TeC2wCvjL/uOZeTHwVeAw4JPtqZ0kabTsEiZJ6hgR8WSqXcHmAM/KzBuHnZ8H3AQcDLwsM/9jyispSRoVA4skSZKkwrJLmCRJkqTCMrBIkiRJKiwDiyRJkqTCMrBIkiRJKiwDiyRJkqTCMrBIkiRJKiwDiyRJkqTCMrBIkiRJKiwDiyRJkqTCMrBIkiRJKiwDiyRJkqTCMrBIkiRJKiwDiyRJkqTCMrBIkiRJKiwDiyRJkqTCMrBIkiRJKiwDiyRJkqTCMrBIkiRJKqz/H1uAIJFdPn4IAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "x_axis, vp = grid.axis_plot(part.V.vp[:,0])\n", "x_axis, vp_kin = grid.axis_plot(part.V.vp_kin[:,0])\n", "x_axis, vp_xc = grid.axis_plot(part.V.vp_x[:,0] + part.V.vp_c[:,0] )\n", "x_axis, vp_hext = grid.axis_plot( part.V.vp_h[:,0] + part.V.vp_pot[:,0])\n", "\n", "fig, ax = plt.subplots(dpi=150)\n", "\n", "\n", "\n", "ax.plot(x_axis, vp, label='$v_p(r)$', lw=4, color=\"#FD9903\")\n", "# ax.plot(x_axis, vp_kin, label='Kinetic')\n", "# ax.plot(x_axis, vp_xc, label='XC')\n", "# ax.plot(x_axis, vp_hext, label=\"H + Vext\")\n", "\n", "ax.set_title(\"H$_2$\")\n", "ax.axvline(x=a, color=\"gray\", ls=':', alpha=0.5)\n", "ax.set_xlim(0,7)\n", "ax.set_ylim(-1.5, 0.5)\n", "\n", "ax.set_xlabel('x')\n", "ax.legend()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "values = {}\n", "for i in part.E.__dict__:\n", " if i.startswith(\"__\") is False:\n", " values.update({i : getattr(part.E, i)})\n", "values" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" } }, "nbformat": 4, "nbformat_minor": 4 }