{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "### Stretched PDFT H_2+" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from CADMium import Pssolver, Psgrid, Partition, Inverter\n", "import CADMium" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "----> Begin SCF calculation for *Isolated* Fragments\n", "\n", " Total Energy (a.u.) \n", "\n", " __________________ \n", "\n", "Iteration A B res \n", "\n", "_______________________________________________________\n", "\n", " 1 -0.24679 -0.24679 1.000e+00 \n", " 2 -0.24169 -0.24169 1.976e-02 \n", " 3 -0.24007 -0.24007 6.216e-03 \n", " 4 -0.23957 -0.23957 1.924e-03 \n", " 5 -0.23942 -0.23942 5.847e-04 \n", " 6 -0.23937 -0.23937 1.739e-04 \n", " 7 -0.23936 -0.23936 4.979e-05 \n", " 8 -0.23935 -0.23935 1.338e-05 \n", " 9 -0.23935 -0.23935 3.175e-06 \n", " 10 -0.23935 -0.23935 5.383e-07 \n", "Done with 1.0\n", "----> Begin SCF calculation for *Isolated* Fragments\n", "\n", " Total Energy (a.u.) \n", "\n", " __________________ \n", "\n", "Iteration A B res \n", "\n", "_______________________________________________________\n", "\n", " 1 -0.24679 -0.24679 1.000e+00 \n", " 2 -0.24169 -0.24169 5.569e-02 \n", " 3 -0.24007 -0.24007 1.732e-02 \n", " 4 -0.23957 -0.23957 5.343e-03 \n", " 5 -0.23942 -0.23942 1.624e-03 \n", " 6 -0.23937 -0.23937 4.820e-04 \n", " 7 -0.23936 -0.23936 1.380e-04 \n", " 8 -0.23935 -0.23935 3.708e-05 \n", " 9 -0.23935 -0.23935 8.799e-06 \n", " 10 -0.23935 -0.23935 1.492e-06 \n", " 11 -0.23935 -0.23935 9.391e-08 \n", "Done with 1.5\n", "----> Begin SCF calculation for *Isolated* Fragments\n", "\n", " Total Energy (a.u.) \n", "\n", " __________________ \n", "\n", "Iteration A B res \n", "\n", "_______________________________________________________\n", "\n", " 1 -0.24679 -0.24679 1.000e+00 \n", " 2 -0.24168 -0.24168 6.136e-01 \n", " 3 -0.24007 -0.24007 1.627e-01 \n", " 4 -0.23957 -0.23957 4.802e-02 \n", " 5 -0.23942 -0.23942 1.441e-02 \n", " 6 -0.23937 -0.23937 4.263e-03 \n", " 7 -0.23936 -0.23936 1.219e-03 \n", " 8 -0.23935 -0.23935 3.274e-04 \n", " 9 -0.23935 -0.23935 7.771e-05 \n", " 10 -0.23935 -0.23935 1.319e-05 \n", " 11 -0.23935 -0.23935 8.205e-07 \n", "Done with 2.0\n", "----> Begin SCF calculation for *Isolated* Fragments\n", "\n", " Total Energy (a.u.) \n", "\n", " __________________ \n", "\n", "Iteration A B res \n", "\n", "_______________________________________________________\n", "\n", " 1 -0.24678 -0.24678 1.000e+00 \n", " 2 -0.24168 -0.24168 6.796e-02 \n", " 3 -0.24007 -0.24007 2.199e-02 \n", " 4 -0.23957 -0.23957 6.870e-03 \n", " 5 -0.23941 -0.23941 2.097e-03 \n", " 6 -0.23937 -0.23937 6.235e-04 \n", " 7 -0.23936 -0.23936 1.787e-04 \n", " 8 -0.23935 -0.23935 4.807e-05 \n", " 9 -0.23935 -0.23935 1.143e-05 \n", " 10 -0.23935 -0.23935 1.950e-06 \n", " 11 -0.23935 -0.23935 1.131e-07 \n", "Done with 3.0\n", "----> Begin SCF calculation for *Isolated* Fragments\n", "\n", " Total Energy (a.u.) \n", "\n", " __________________ \n", "\n", "Iteration A B res \n", "\n", "_______________________________________________________\n", "\n", " 1 -0.24671 -0.24671 1.000e+00 \n", " 2 -0.24165 -0.24165 3.192e-02 \n", " 3 -0.24005 -0.24005 1.024e-02 \n", " 4 -0.23955 -0.23955 3.196e-03 \n", " 5 -0.23940 -0.23940 9.781e-04 \n", " 6 -0.23935 -0.23935 2.919e-04 \n", " 7 -0.23934 -0.23934 8.410e-05 \n", " 8 -0.23933 -0.23933 2.280e-05 \n", " 9 -0.23933 -0.23933 5.502e-06 \n", " 10 -0.23933 -0.23933 9.806e-07 \n", "Done with 6.0\n", "----> Begin SCF calculation for *Isolated* Fragments\n", "\n", " Total Energy (a.u.) \n", "\n", " __________________ \n", "\n", "Iteration A B res \n", "\n", "_______________________________________________________\n", "\n", " 1 -0.24595 -0.24595 1.000e+00 \n", " 2 -0.24120 -0.24120 2.486e-02 \n", " 3 -0.23966 -0.23966 8.101e-03 \n", " 4 -0.23918 -0.23918 2.582e-03 \n", " 5 -0.23902 -0.23902 8.080e-04 \n", " 6 -0.23898 -0.23898 2.483e-04 \n", " 7 -0.23896 -0.23896 7.412e-05 \n", " 8 -0.23896 -0.23896 2.114e-05 \n", " 9 -0.23896 -0.23896 5.572e-06 \n", " 10 -0.23896 -0.23896 1.242e-06 \n", " 11 -0.23896 -0.23896 1.562e-07 \n", "Done with 10\n" ] } ], "source": [ "# dis_eq = np.linspace(1.0,5,30)\n", "# dis_st = np.linspace(5.1,10,10)\n", "# dis_eq = np.linspace(1.0,5,10)\n", "# dis_st = np.linspace(5.1,10,3)\n", "# distances = np.concatenate((dis_eq, dis_st))\n", "distances = [1.0,1.5,2.0,3.0,6.0,10]\n", "# distances = [2.0]\n", "energy = []\n", "\n", "for d in distances:\n", " a = d/2\n", " Za, Zb = 1,1\n", " pol = 2\n", "\n", " #Set up grid\n", " NP = 7\n", " NM = [6,6]\n", " L = np.arccosh(10/a)\n", " loc = np.array(range(-4,5)) #Stencil outline\n", " grid = Psgrid(NP, NM, a, L, loc)\n", " grid.initialize()\n", "\n", "\n", " #Fragment a electrons [alpha, beta]\n", "\n", " #Fragment a electrons [alpha, beta]\n", " Nmo_a = [[1,0]]; Nmo_A = [[1,0]] #Number of molecular orbitals to calculate\n", " N_a = [[1,0]]; N_A = [[0,0]]\n", " nu_a = 0.5\n", "\n", " #Fragment b electrons\n", " Nmo_b = [[1,0]]; Nmo_B = [[1,0]]\n", " N_b = [[1,0]]; N_B = [[0,0]] \n", " nu_b = 0.5\n", "\n", " #Molecular elctron configuration\n", " Nmo_m = [[1,0]]\n", " N_m = [[1,0]]\n", "\n", "\n", "\n", " part = Partition(grid, Za, Zb, pol, [Nmo_a, Nmo_A], [N_a, N_A], nu_a, \n", " [Nmo_b, Nmo_B], [N_b, N_B], nu_b, { \"AB_SYM\" : True,\n", " \"interaction_type\" : \"dft\", \n", " \"kinetic_part_type\" : \"libxcke\",\n", " \"hxc_part_type\" : \"overlap_hxc\",\n", " \"k_family\" : \"gga\", \n", " \"ke_func_id\" : 500,\n", " })\n", "\n", " #Setup inverter object\n", " mol_solver = Pssolver(grid, Nmo_m, N_m)\n", " part.inverter = Inverter(grid, mol_solver, { \"AB_SYM\" : True, \n", " \"use_iterative\" : False,\n", " \"invert_type\" : \"wuyang\",\n", " \"DISP\" : False, \n", " })\n", "\n", " part.optPartition.isolated = True\n", " part.scf({\"disp\" : False,\n", " \"alpha\" : [0.6],\n", " \"e_tol\" : 1e-6})\n", "\n", " part.optPartition.isolated = False\n", " part.scf({\"disp\" : False,\n", " \"alpha\" : [0.6],\n", " \"max_iter\" : 20,\n", " \"e_tol\" : 1e-6,\n", " \"iterative\" : False,\n", " \"continuing\" : True})\n", "\n", " energy.append(part.E.E)\n", " print(f\"Done with {d}\")\n", " \n", " \n", "energy = np.array(energy)\n", "# np.save('h2plus_distance.npy', distances)\n", "# np.save('h2plus_overlap.npy', energy)" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAECCAYAAAAsBKpOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAuJAAALiQE3ycutAAAqZklEQVR4nO3deXycZbn/8c+VpM10yXTPpGlKC5QuYWvLLij0yC6IFFA4CucgoiCeght4PG7H5Yi4AVoVFUSqUrDATxAERVAEAcXpQpt0SdekbZIuabM1+/X7I5PpUNI2kzzTmaTf9+uVV/o8c8/M1bTJN/f9PPd9m7sjIiKSClnpLkBERAYuhYyIiKSMQkZERFJGISMiIimjkBERkZRRyIiISMrkpLuAVAiHw15UVJTuMkREDgulpaV17h7u7rEBGTJFRUWUlJSkuwwRkcOCmVXs7zENl4mISMooZEREJGUUMiIikjIKGRERSRmFjIiIpIxCRkREUkYhIyIiKaOQ2cevX9/Ie+79G23tHekuRUSk31PI7KN2TxsrttSyvb4l3aWIiPR7Cpl9RMK5AFTVNqW5EhGR/k8hs49IOAQoZEREgqCQ2Ue8J1PXnOZKRET6P4XMPvJjPZlq9WRERPpMIbOPvNwchgzK1nCZiEgAFDL7MDMi4VyqajVcJiLSVwqZbuSHQ+rJiIgEQCHTjYhCRkQkEAqZbhSEc6lpbKW5rT3dpYiI9GsKmW5E4neY6bqMiEhfKGS6Eb+NuU5DZiIifaGQ6UYkr2tpGfVkRET6QiHTDS0tIyISDIVMN/LD6smIiARBIdONoYNzyAvlaGkZEZE+UsjsRyQcolIhIyLSJ4GFjJnNMbMSMyszswfMLKenbczsHDOrM7MlsY9FCc+ZaGZ/M7PVZvZXMysMquYD6VxaRiEjItIXgYSMmWUD9wNXufsUYDhwbZJtXnf3mbGPKxPOfwtY4O5TgUeAbwZR88FEwiHNkxER6aOgejKnABXuviJ2fD8wtxdt3sLMDLgYeCh26pfAewOp+CAi4RB1zW00NLcdircTERmQggqZIqA84XhT7FwybU6KDZW9ZGYXxM6NARrcvQnA3RuAFjMbkfjCZnZLbBiuxMxKampq+vwX6porU63Ny0REei3IC/+e8GdLsk0UmOTuM4F5wC/MbFI3z+n2td19vrsXd32MGjUqucq7obkyIiJ9F1TIlANHJBwXARU9bePute5eG/vzEuDvwExgBzDczEIAZjYUGOTuuwOqe7/yFTIiIn0WVMi8AUwws+LY8YeBx3vaxszGx66/YGZFwGlAibs78DR7bxD4D+DJgGo+oEhsQqYu/ouI9F4gIePu7cCNwCIzKwMagQVmdrKZPXOgNrGXuAJYbmZLgN8Dd7j7mthjnwOuM7PVwDXA54Oo+WDGxdcvU09GRKS33jaXpbfc/QWgeJ/Tb9B5d9iB2uDuPwR+uJ/XLQfeGVSdPZWbk83oYYOp0oV/EZFe04z/A8jPy6Vqt3oyIiK9pZA5gEg4RJX2lBER6TWFzAEUhENU1TbRef+BiIgkSyFzAJFwLk2tHdQ2ada/iEhvKGQOIL4Ns+4wExHpFYXMAeyd9a87zEREekMhcwCRsObKiIj0hULmAOI9Gd1hJiLSKwqZAxgzbDBZpqVlRER6SyFzADnZWYwdnkulJmSKiPSKQuYgNCFTRKT3FDIHoW2YRUR6TyFzEJFwLtV1TXR0aNa/iEiyFDIHEQmHaG13ahpb0l2KiEi/o5A5iL1zZTRkJiKSLIXMQeRrroyISK8pZA4ikqf1y0REekshcxAaLhMR6T2FzEGMGjqYQdmm9ctERHpBIXMQWVlGfl5IISMi0gsKmR7ID+dquExEpBcUMj3QtQ2ziIgkJ7CQMbM5ZlZiZmVm9oCZ5fS0jZl90MyWmtkyM/unmZ2T8JwHzWyjmS2JfVwXVM09FQmH2F7fTFt7x6F+axGRfi2QkDGzbOB+4Cp3nwIMB65Nos16YI67nwD8J7DQzBJr+x93nxn7eCiImpORH86lw2FHg2b9i4gkI6iezClAhbuviB3fD8ztaRt3/7u774ydLwFCdIZQRuiaK6MhMxGR5AQVMkVAecLxpti5ZNsA/Duwwt1rE859OTaUtsDMCvZ9gpndEhuGKzGzkpqamt79LfYjvkOmLv6LiCQlyAv/icsUW2/amNls4Ot0Dpl1+TwwFZgJrAJ+8bYXdZ/v7sVdH6NGjUqu8oPYOyFTPRkRkWQEFTLlwBEJx0VARTJtzGwq8Fvgandf03Xe3bd4pw7gbuD0gGrusa71y7S0jIhIcoIKmTeACWZWHDv+MPB4T9uYWRHwNHCTu7+e+CQzK0w4vBpYFlDNPRYO5RAalKXhMhGRJAUSMu7eDtwILDKzMqARWGBmJ5vZMwdqE3uJLwP5wLcTblWeHHvsITN708yWAlfQGU6HlJkRCYeoVE9GRCQpb5vL0lvu/gJQvM/pN4CLD9IGd7+RzgDq7nXPDarGvohoaRkRkaRpxn8PRUaEqK7TcJmISDIUMj0UyctlZ0MLzW3t6S5FRKTfUMj0UNdcmW3qzYiI9JhCpofytXmZiEjSFDI9FNFcGRGRpClkemjv0jIKGRGRnlLI9FB+Xmy4TNdkRER6TCHTQ8Nyc8jLzaFqt3oyIiI9pZBJQn44l6o6hYyISE8pZJJQMCKku8tERJKgkEmClpYREUmOQiYJ+eEQdU1tNLa0pbsUEZF+QSGThK7Ny6o1ZCYi0iMKmSRoroyISHIUMkmIb8OsuTIiIj2ikElCfp6WlhERSYZCJgl7F8lUyIiI9IRCJgm5OdmMGjqISl34FxHpEYVMkiJhzZUREekphUySIuGQrsmIiPSQQiZJkXAuVbXNuHu6SxERyXgKmSRFwiH2tLZT16xZ/yIiBxNYyJjZHDMrMbMyM3vAzHKSaWNmd8XOrzazKxPOTzSzv8XO/9XMCoOquTfytUOmiEiPBRIyZpYN3A9c5e5TgOHAtT1tY2bnA6cD04E5wPfNLC/21G8BC9x9KvAI8M0gau6tSNfmZbrDTETkoILqyZwCVLj7itjx/cDcJNrMBR509zZ33wy8DJxvZgZcDDwUa/dL4L0B1dwrWlpGRKTnggqZIqA84XhT7FxP2+zvsTFAg7s3Abh7A9BiZiMOVExTUxPl5XtfbsWKFZSVlcWPy8rKWLFiRfy4vLycaDQaP66uriYajdLc3Nlb2b17N9FolNra2njIREvXsW3bNmJ1EY1GqaioiL/G8uXLWbt2bfx4zZo1lJSU7P0LbtrE4sWL48dVVVVEo1FaWloA2LVrF9FolLq6OgD27NlDNBpl+/btAHR0dBCNRtm8eXP8Nd58803WrVsXP169ejWlpaXx440bN7JkyZL4cWVlJdFolNbWVgBqamqIRqPU19cD0NjYSDQaZceOHQC0t7cTjUbZsmVL/DWWLVvG+vXr48erVq1i5cqV8eMNGzawdOnS+PHWrVuJRqO0tXVe09q5cyfRaJSGhgYAGhoaiEaj7Ny5E4C2tjai0Shbt26Nv8bSpUvf8p4rV658y3uuX78+Je+5YcOGt7znqlWr3vKey5Ytix9v2bKFaDRKe3s7ADt27CAajdLY2AhAfX090WiUmpoaAFpbW4lGo1RWVsZfY8mSJWzcuDF+XFpayurVq+PH69at480334wfb968mWg0SkdHBwDbt28nGo2yZ88eAOrq6ohGo+zatQuAlpYWotEoVVVV8ddYvHgxmzZtih+XlJSwZs2a+PHatWtZvnx5/LiiooJoNBq/EWbbtm1Eo1Gamjp/CautrSUajbJ7924AmpubiUajVFdXx18jGo0G8v3a9Z5d369d79nU1JSy9+zuZ0Tie2byz4jquiZ+/cJi/vfRV7l14WLa2jt6/TPiQN523aQPEm+3sl602d9j+97G9bbXNrNbgFu6jvPz8/dfZR+NHT4YA3buaU/Ze4iIBKW9wymrrmPFllpeWlbDptodrN+1ju31e4f8w6EctqZoa3kL4lZcMzsN+La7vyt2fD7wX+5+aU/amNmPgX+6+wOxx34DPAY8DtQABe7eZGZDgc3uPupA9RQXF3vibwRBO+Ubz3PypFH8+EMnpew9RESS1dDcxsrKOkq21lKypZaSrbWsqqylqbUj3qZo1BCKx4cpLgzHP08YOYTOqxO9Y2al7l7c3WNB9WTeACaYWbG7lwAfpjMgetrmceALZvZLIAKcBXzM3d3MnqbzBoGfAf8BPBlQzb1WoFn/IpJG7k51XXM8SLo+b9jRQFe/YVC2MTWSx6UnFMYDZfr4MCOGDDqktQYSMu7ebmY3AovMbDDwErDAzE4GvuruF++vTez5fzKz84BVdA6Pfdrd62Iv/zngN2b2WaASuCaImvsiEs6ldGvdwRuKiPRRW3sH67Y3xIOkNBYqOxpa4m1GDBnEsYVh3j09nxmx3snR44YzOCf9UyEDuybj7i8A+3aX3qDz7rADtel67Hbg9m7OlwPvDKrOIOSHQ/x19TbcvU9dTBGRRPXNbazc+tbeycrKOlra9g53HTF6KKdMHv2W4a7xI0IZ+7MoyAv/h41IXojWdqemsZXRwwanuxwR6Wfcncraps4g6Rry2lrLxh2N8TaDc7KYFsnj8pkTOgOlMMz0gjzyQod2uKuvFDK9EEnYV0YhIyIH0trewdpt9fFAKa3s/FzT2BpvM2roII4tHMEFxxYwY3wexeNHcNS4YQzKTv9wV18pZHohcULmjPHhNFcjIpmitqmV0i2x6yaxj9WV9bS07x3umjxmKGccPSbhDq8RRMK5GTvc1VcKmV7o2iGzWkvLiByW3J0tuxOHu3ZTsrWW8p174m1yc7KYXpDHFSdNiAfKtIIww3MPrx+7h9ffNiBaWkbk8NHS1kFZdX3CxfjdlG6tY/eevcNdY4YNprgwzMXHj6d4fJhjC8NMHjOMnAEw3NVXCpleGD10MDlZRqVCRmRA2d3Yuvc24ViorKmuo7W9c/KJGRw5dhjvPGZs/FbhY8eHGZc3cIe7+koh0wtZWUZ+Xq5WYhbpp9ydipo9b7lVuGRLLZt37R3uCg3KYnpBmKtOnhgf7ppekMfQwfqxmQx9tXopMiJEdZ16MiKZrrmtnTVV9W8JlNKttdQ17d14cFxeLsXjw7x3ZmE8UCaPGUZ2lnonfaWQ6aVIXojF5TXpLkNEEtQ0tLzlzq6SLbWUVdfT1tE53JVlcNS44cyZlk9xYZgZ48PMGJ9Hfl4ozZUPXAqZXoqEc9lW10x7h+u3HZFDrKPDKa9pjC+x0hUoWxJWEh46OJvpBXlcfepEiseP6Ly7K5LHkMHZaaz88KOQ6aX8cIgOhx31zfEtmUUkeE2tXcNduxOGu+qob9473BUJdw53XT57QjxQJo0eSpZ+AUw7hUwv7b2NWSEjEpSdDS17551s6QyTsm31tMeGu7KzjKPHDePcGYnDXWHGDs9Nc+WyPwqZXkpcWuZ4DrhRp4jso6PD2bizMRYke4e7EqcFDBuczYzxYT542hHxi/FTI3mEBmm4qz9RyPRSvCejO8xEDqiptZ1V+2yktXJrLQ0te3eXHT8ixLGFYa46uSgeKBNHabhrIFDI9FIkdjdKVYq2LBXpj7bXv30jrXXb6omNdpGdZRyTP5wLji14y3CXFpoduBQyvRQekkNuTpYmZMphqb3D2bCj4W3DXdV1e78f8nJzmFEY5qwpk+O9kyn5wzXcdZhRyPSSmVEwIqThMhnw9rS0s7Jyn420ttaxp3XvcNeEkUM4oWhkfCOtYwvDFI3q277xMjAoZPogkhdST0YGlOq6prfvG7+9IT7clZNlHBPJ61wIMhYoM8bnMXKohrukewqZPsgP57J2bX26yxBJWnuHs357PSsS5p2UbKlle/3eX5rCoRyKC8OcPXXcW4a7cnM03CU9p5Dpg0g4xI6GFlraOhicoyW9JTM1NLexcp+7u1ZV1tLUuncjraJRQ5h9xMi37Bs/YaSGu6TvFDJ90DVXZlt9MxNGDklzNSLQ1t7By2XbO3soXcNdOxrw2HDXoGxjaiSPS08ojAfK9PFhRgzpX/vGS/+hkOmDxM3LFDKSbuU7G7l14WKim3YBMGLIII4tDPPu6fnxvU+OHjdcvW45pAIJGTO7DbgFyALudvcfJNPOzO4C3gs0A5XAR9y9PPbYBqAB6NqG7t/dvSSIuvuqa+XWam1eJmn25NIt/M/jb9Lc3sEX3jODi48fz/gRIQ13Sdr1OWTMbBpwMzALMCBqZs+4+9ok2r0A/I+7t5rZx4B7gLkJT7/A3Sv6WmvQ9i4tozvMJD3qm9v4ypMrWPSvCqZGhvODa2YzrSAv3WWJxAXRb74ceMTd6929DlgEvC+Zdu7+rLt39VTeACYFUFfKdS2MqW2YJR2WVeziknv/xqJ/VXDdGZN48hNnKWAk4wQxXFYELE043gRM7UO7m4Bn9zn3lJllAU8BX3H3trc/7dAbnpvD8NwcqhQycgh1dDg//ds6vvPcKvJCOfzsupM5rziS7rJEutWjkDGzV4Hx3Ty0KPbZE5sf4KUO2M7MPgocD8xJOH2Wu1eYWR7wK+DTwLf2ed4tdF7rAaCgoOAAJQQrEs6lWsNlcohU1TbxqUeX8ErZDt5x9Bi+9/6ZFIzQVhOSuXoUMu5+xv4eM7M7gCMSThUB3V0/KT9QOzO7ApgHnOPuexLeuyL2uc7Mfgbc0E1984H5XcfFxcW+b5tUiYRD6snIIfF8SRWfXbSUuqY27rhwOh9711FapVgyXhDXZJ4A3m9mw2K9jStj53rczszOA+4ELnL37V1PiLUNx/6cA1wBLAug5sAoZCTVmlrb+dLvlvORh94gPGQQj938Dm4+52gFjPQLfb4m4+6rzew+Oq+3GJ23Jq8DMLObgEJ3/9KB2gE/AobSee0FYLu7nwtEgMdj12OygVfoDKOMkR/OpbapjT0t7do7XAK3qrKOeQ8vZlVVHXNnT+Crlx3H8FxNb5P+I5D/re7+feD73Zz/SQ/bHbOf110HzAyixlTp2lemuq6JSWOGpbkaGSjcnV+9tpGvP13K4Ows7rl6JpfNnJDuskSSpl+J+mjvrP9mhYwEYmdDC7cvWsbzpVXMPmIk91w9i4mjh6a7LJFeUcj00d4JmbouI33397LtfPLRJWyra2bev01h3ruPISdby8BI/6WQ6aPE9ctEequlrYPv/Wk19720loJwiIdvPJ3TjhqT7rJE+kwh00fj8tSTkb7ZsL2BeQsXs6xiNxceW8CdVxyvTcBkwFDI9FFoUDYjhw7S+mWSNHfnsehmvvy75bS78825x3P1KRO1qKUMKAqZABRorowkqbaplS88sZwnl26heHyYe6+ZxZT84ekuSyRwCpkA5IdDlO9sTHcZ0k/8a2MNty5cTEXNHj585pHccdE0bWksA5ZCJgCRvFze2LATd9dQh+xXe4fzoxfLuPvPaxg1dBC/uP4U5kzLT3dZIimlkAlAJByisaWd+uY28kLaxlbebsuuPdz2yBL+sX4nZ08dx3euOjF+04jIQKaQCUDi5mUKGdnXs8u3csdjb7KnpZ0vXlLM9e+YrHXH5LChkAlA1+Zl1bVNungrcY0tbXzt9yU8/I9yjho3jHuvnsVxE0akuyyRQ0ohE4D4hMw63WEmnVZs2c28hxezdlsD15w6kS9eUszQwfp2k8OP/tcHoGu4rHK35soc7jo6nAdeWc9dz64iNCiLH31wNhcf391+fyKHB4VMAMYOz8VMs/4Pd9vqmvnMb5fy19XbOPXI0dz9gZkUjhyS7rJE0kohE4BB2VmMHZ5LtYbLDlt/WVXNZ367lJrGVj513lRumTOFbF3cF1HIBCUSztXSMoeh5rZ27np2Ffe/vJ6iUUN49GMncdKk0ekuSyRjKGQCEskLsaqqLt1lyCFUVl3PvIcXU7K1lktPLOQblx9HWLewi7yFQiYg+eEQf1uzXbP+DwPuziP/LOd/nyohy+C7V53I3NkT9O8u0g2FTEAi4Vxa2jvY1djKqGFapn2g2t3Yyn8/sYxn3qzkhKIR3Hv1LCaP1Y6oIvujkAlI4lwZhczA9Pq6HXzykSVsrW3iprOP5lPnTWVwjnatFDkQhUxAEpeWmV6Q5mIkUG3tHdzz5zXMf7GMscNz+dUNp3HmlLHpLkukX1DIBCQ/L9aT2a3bmAeS8p2N3LpwMdFNuzh3Rj53XXkio9VTFekxhUxA4sNlmpA5YPxuyWa+8MRymts7+Oplx3Lt6ZN0cV8kSYEMKJvZbWa2xszWmtl/JdvOzL5iZlvNbEns43MJj80xsxIzKzOzB8wsI4NxzLDB5GSZ1i8bAOqb2/j0o0u5deESxo8M8dQnzuK6MyYrYER6oc8/sM1sGnAzMAswIGpmz7j72iTbzXf3r+/znGzgfuBSd19hZo8C1wK/6GvdQcvKMvLzNCGzv1tavotbFy5mw45GrjtjEp+/eAahQdq1UqS3gujJXA484u717l4HLALe14d2iU4BKtx9Rez4fmBuADWnRH44RLWGy/qljg7nJ39dyxU//ju797Ty8+tO5quXHaeAEemjIEKmCChPON4UO5dsu4+a2TIze8LMjknmtc3sltiQWomZldTU1PTm79FnWlqmf6qqbeLaB17nzj+s5LSjRvPsbe/i3OJIussSGRB6NFxmZq8C3a1Xvij22RObH+Cl9tfuJ8DX3b3NzK4DngRm9PS13X0+ML/ruLi42Ltrl2qRcIht9dW0d7gWR+wn/lRSxe2LllLX1MbnLprOR995lHatFAlQj0LG3c/Y32NmdgdwRMKpIqCim6bl+2vn7pUJ7/WQmX3PzEYc6DmZKBIO0d7h7Ghojt/SLJmpqbWdbzxdyoLXNjJ5zFAevP5UTpw4Mt1liQw4QQyXPQG838yGmVkecGXsXI/bmVlhVyMzOxeod/fdwBvABDMrjj38YeDxAGpOify8zgmZ1Royy2irKuu47IevsOC1jVwxu4jfz3unAkYkRfp8d5m7rzaz+4CldA5n3e3u6wDM7Cag0N2/dKB2wJ1mNhtoB3YDV8Reu93MbgQWmdlg4CVgQV9rTpXEuTLayz3zuDsLXtvI158uJTc7i3uunsllMyekuyyRAS2QOSfu/n3g+92c/0kP2113gNd+ASje3+OZpCtkKnWHWcbZ2dDC7YuW8nxpNbOPGMk9V89i4uih6S5LZMDLyImN/VXi+mWSOV4p284nH1nC9vpm5v3bFOa9+xhysrWwpcihoJAJ0Ighg8jNydJcmQzR0tbB9/60mvteWktBOMTDN57OaUeNSXdZIocVhUyAzIxIOKT1yzLAhu0NzFu4mGUVu7nouALunHsCI4Zq10qRQ00hEzBNyEwvd+ex6Ga+/LvldDjcOfd4PnDKRK07JpImCpmA5YdDvL5uR7rLOCzVNrXyhSeW8+TSLRSPD3PvNbOYkj883WWJHNYUMgGL5IXYXt9Ca3sHg3Rx+ZD518Yabl24mIqaPdxw1pHcfuE0cnO07phIuilkAtZ1h9m2umYKRw5JczUDX3uHM//FMu758xpGDR3Eg9efwjnT8tNdlojEKGQCljghUyGTWpt37eGTC5fwjw07OXvqOL5z1YmMi626ICKZQSETsHzNlTkk/vDmVu54bBlNrR188ZJirn/HZC1sKZKBFDIB0zbMqdXY0sbXfl/Cw/8o5+hxw7jn6llawkckgylkAqaQSZ0VW3Yz7+HFrN3WwDWnHsEXL5nB0MH6LyySyfQdGrDhuTkMz83RcFmAOjqcB15Zz13PrmLI4Gx+/MHZXHR8d9sbiUimUcikQH44l+o69WSCsK2umc/8dil/Xb2NU48czd0fmKkbKkT6EYVMCkTytLRMEP6yqprP/HYpNY2tfPq8qXx8zhTtOCrSzyhkUiASzqVka226y+i3mtva+dYfVvHAK+spGjWERz92MidNGpXuskSkFxQyKRAJh9i9p5Wm1nZCgzTrPBll1XX818NLKN1ay3tPLOTrlx9HOKSFLUX6K4VMCuTH7jCrrm3miDHaGKsn3J2F/yznf59aQbYZ373qRObOnqCFLUX6OYVMCsQ3L6trUsj0wK7GFv778Tf5w/JKTigawb1Xz2Ly2GHpLktEAqCQSYH4Nsy7dfH/YF5ft4PbHllCZW0TN59zNJ88dyqDc7SwqMhAoZBJgUieJmQeTFt7B/f8eQ3zXyxj7PBcfnXDaZw5ZWy6yxKRgClkUqBr/bLqOk3I7E75zkZuXbiY6KZdnDsjwl1XnsDoYYPTXZaIpIBCJgVCg7IZNXQQZdX16S4l4/xuyWa+8MRyWto7+Nplx/Kh0yfp4r7IABbI4LeZ3WZma8xsrZn9V7LtzOznZrYk9lFiZu1mNjr22AYzW5HweHEQNafaxceP54WV1azYsjvdpWSE+uY2PvXoEm5duITCkUN48hNnce0ZkxUwIgNcn3syZjYNuBmYBRgQNbNn3H1tT9u5+0cS2n0IuM7ddyY8/QJ3r+hrrYfSvHcfw2PRCr793CoevP7UdJeTVkvLdzFv4WI27mjkujMm8fmLZ2j+kMhhIoiezOXAI+5e7+51wCLgfX1o9yFgQQB1pVUkHOI/33Ekf1m1jdfW7Uh3OWnR0eH8+C9rueLHf6d2Tys/v+5kvnrZcQoYkcNIECFTBJQnHG+KnUu6nZkVAGcAT+zz3KfMbKmZfd3M3tb7MrNbYsNsJWZWUlNT05u/R+BuPvtowqEc7np2Je6e7nIOqaraJj50/+t869mVnHbUaJ697V2cWxxJd1kicoj1KGTM7NXYtZF9P74Ta5L4E/RAg+wHa3cN8JS7J14xP8vdZwFnAccDn37bi7rPd/firo9RozJjnasRQwdx0zlHE920iz+XVqe7nEPmTyVVXHj3S/xj/U4+d9F0Fnz4tPjcIRE5vPTomoy7n7G/x8zsDuCIhFNFQHfXT8p70O5DwOf3ee+K2Oc6M/sZcENPas4U17/jSB58ZQPffm4Vc6bnD+hVhJta2/nG06UseG0jk8cM5cHrT+XEiSPTXZaIpFEQw2VPAO83s2FmlgdcyduHuw7azsxmAIXA8wnnhplZOPbnHOAKYFkANR8yQwZnM+/dx7Cqqo7fLdmc7nJSZlVlHZf98BUWvLaRK08q4vfz3qmAEZG+h4y7rwbuA5YCS4AfuPs6ADO7ycy+erB2MdcCD7t7e8K5CPCSmS2LPa8VuLOvNR9qHzhlIpPGDOV7f1pNc1v7wZ/Qj7g7D726gUt/+DJbdu3h3mtm8Z2rTmR4rqZgiQjYQLwgXVxc7CUlJeku4y1+t2Qzty5cwlcuLeY/zzwy3eUEYmdDC7cvWsrzpdXMPmIk91w9i4mjtSCoyOHGzErdvds5jFqJ8BC59IRCZowP84MXyqhvbkt3OX328prtXHj3S7ywspp5/zaFRz92hgJGRN5GIXOIZGUZt184jR0NLTzw8vp0l9NrLW0dfPMPpVz7wOvkZBkP33g6nzp/GjnZ+q8kIm+ngfND6Jyp4zj1yNH87KV1fOj0Sf1uUcj12xu4deFillXs5qLjCrhz7gmMGKpdK0Vk//Tr5yFkZtxx4TTqmtv48V/K0l1Oj+1paefeP6/h4nv+xpqqeu6cezw/+uBsBYyIHJR6MofYSZNGc+6MCL98dSPXn3kkhSOHpLuk/XJ3nlq2lTufKWXL7ibOOGoMX3vfcUzJH57u0kSkn1BPJg0+e8E0Wts7uOf5NekuZb+WVeziqp+8yryHF5OTncV9157Eb248TQEjIklRTyYNphXkcfnMCfz2X+Xc+K6jMuoHd1VtE99+bhWL/lXB8NwcPnfRdK4/czK5OVrUUkSSp55MmnzyvKlkZxnf/eOqdJcCdC4JM//FMuZ85y88Fq3gAydP5IXPnM1NZx+tgBGRXlNPJk0mjh7KB0+bxIN/38DS8l1pW4LF3fnD8kr+75lSKmr2cOqRo/nSJcUcN2FEWuoRkYFFPZk0umXOFIYOzubbz6WnN7N8824+8NPX+PivowD86IOzeeSjpytgRCQw6smk0bi8XD5y1pHc+0IZL6/ZzlnHjD0k77utrpnvPLeKR/9VzpBB2Xz2gmnccNaR2kxMRAKnkEmzj7zrKBa8tpG7nlvJmVPOTOme981t7Tzw8gbmv9i5tM2VJxVx+wXTyNdeLyKSIgqZNAuHBvHxc6bwjWdKeXZ5JRcdPz7w93B3nltRxf89U8qmnY2cPGkUX7q0mBOKRgb+XiIiiRQyGeDaMybxwCvr+fYfV3FecSTQdcBKt9by1adKeHXdDiaMHMIPrpnFJSeMT2mPSUSki0ImA4QGZXPbucdwx2Nvdt4+fMoRB3/SQWyvb+a7f1zNI//cRG5ONp86byoffddRuu4iIoeUQiZDXDG7iPteWsfdz6/hspkTeh0GLW0d/PLvG7j3z2uoa25j7qwJfPbCaYwfkbnL14jIwKVbmDNETnYWnz1/Glt3N/Gr1zYm/Xx3508lVZz//b/yjWdKmRIZzhMffwff+8BMBYyIpI16MhnkwuMKOKFoBPNfLOP9p0wkHOrZKserKuv42u9LeLlsOwXhEHd/YCbvPbGQrCxddxGR9FJPJoN0bgUwnZrGVn7+0rqDtt/Z0MIX/99yLrrnJf65YSfz3n0ML3zmbN43a4ICRkQygnoyGebMKWM5c8oYfv7yeq49YzLj8nLf1qa1vYOHXt3IPc+vprapjfeeWMgdF01nQgZvGyAihyf1ZDLQ7RdMp7Glc8HKfb24spoL7n6Jr/2+hMljh/HYzWdw7zWzFDAikpHUk8lAJ04cyUXHFfDr1zdyw1lHMnH0UMqq6/ja70v56+pt5Ofl8p2rTmSuhsVEJMMFEjJmdhtwC509o7vd/QfdtBkOPAGcArzh7ucmPDYC+DUwDagFrnP3FbHH5gDzgcHAS8BH3b0tiLoz2afPn8ZzKyr55h9Kyc8LseC1jWRnGZ+YM4WbzzmaYbn6/UBEMl+ff1KZ2TTgZmAWYEDUzJ5x97X7NG0F/g8YBty2z2N3AMvc/RIzuxj4EXC2mWUD9wOXuvsKM3sUuBb4RV/rznRT8odz1UkTeeSNcgDec/x4PnfRdCaOHprmykREei6IX4cvBx5x93oAM1sEvA/4bmIjd28GXjSzc7p5jbnAxbF2z5jZz8xsLDAFqOjq1dAZOJ/gMAgZgE9fMJWsLON9Mws57agx6S5HRCRpQYRMEbA04XgTMDXJ15gAlCccV8TOFe1zflPs3FuY2S10DtcBUFBQkOTbZ6b8vBDfnHt8ussQEem1HoWMmb0KdLc88KLYZ09s3tei9nmNg762u8+n87oNAMXFxd5dOxERObR6FDLufsb+HjOzO4DEFR2L6OyJJKMCmAh0zUCcAGwGQgG8toiIpEkQ82SeAN5vZsPMLA+4MnYuGY8DNwCY2UVAmbtvB94AJphZcazdh2NtRUSkH+jzNRl3X21m99F5XcbovIV5HYCZ3QQUuvuXYsfL6Bx2yzOzCuAL7v4gcBfwazNbA9TReQcZ7t5uZjcCi8ys6xbmBX2tWUREDg1zH3iXL4qLi72kpCTdZYiIHBbMrNTdi7t7TMvKiIhIyihkREQkZRQyIiKSMgPymoyZ1TJwbnUeBdSku4gMpa9N9/R12T99bbrX169LkbuHu3tgQIbMQGJmJfu7oHa409eme/q67J++Nt1L5ddFw2UiIpIyChkREUkZhUzmm3/wJoctfW26p6/L/ulr072UfV10TUZERFJGPRkREUkZhYyIiKSMQiZDmdlEM/uzmZWa2XIz+3q6a8o0ZvYjM2tLdx2ZxMyGm9lDZrbazFaa2cfSXVMmMLMLzWxJ7OPvZjYj3TWli5n9wMwq9v3eMbO7zKws9n/nyqDeTyGTudqAO9x9BjAbeKeZvTfNNWUMM3snMCzddWSg7wHL3X0qMIPkt90YqH4KXOPuM4EHga+mtZr0egQ4KfGEmZ0PnA5MB+YA349t3dJnCpkM5e5b3f2N2J9bgGXApPRWlRnMLBe4E/hMumvJJLEfCpfQGTR4p+r0VpUxHOiakT4C2JrGWtLK3V9296p9Ts8FHnT3NnffDLwMnB/E+/V5PxlJPTMbA7yPgP7RB4AvAfe7+zazIHb7HjCOAqqAH5rZqUA5cKu7b0hrVZnhWuBpM9sDNABnprmeTFMEPJZwvCl2rs/Uk8lwsd/aFwHfc/fSdNeTbmZ2AnAa8It015KBBgEzgd+5+2zgKeCBtFaUAcwsG/hvYI67T6Rzk8SH0ltVRkqczxLYb28KmQwW++b4NfCGu38/3fVkiDOBYmC9mW0Ass1sg5mNSm9ZGaEc2Onuf4gd/4bO63mHu1lA2N3fjB3/CjgnfeVkpHLgiITjIgJaZFghk9l+CtQCt6e7kEzh7j9290J3n+zuk4H22J8P+5V1Y+Psy83s5Nip84AVaSwpU2wGppnZhNjxhcBhPyqwj8eB/zCzbDMrBM4C/hjEC+uaTIYyszOBDwPLgcWxaw8PuPu9aS1MMt3NwP1mNgzYBXwkveWkn7tvNbPPAn+M3bZbD9yQ5rLSxszuA95D5yhABfC0u3/MzM4DVtE5bPZpd68L5P20rIyIiKSKhstERCRlFDIiIpIyChkREUkZhYyIiKSMQkZERFJGISMiIimjkBERkZRRyIiISMr8f9s8nCjEPXpRAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "h_energy = -0.24\n", "energy = np.array(energy)\n", "\n", "fig, ax = plt.subplots(1,1, dpi=75)\n", "ax.axhline(y=0, alpha=0.5, c=\"grey\", ls=\":\")\n", "ax.plot(distances, energy - 2 * h_energy)\n", "# ax.set_ylim(-0.12,0.1)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "# TEST" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Total Energy \n", "\n", " __________________ \n", "\n", "Iteration A B res \n", "\n", "_______________________________________________________\n", "\n", " 1 -0.24679 -0.24679 1.000e+00 \n", " 2 -0.24169 -0.24169 6.139e-01 \n", " 3 -0.24007 -0.24007 1.627e-01 \n", " 4 -0.23957 -0.23957 4.803e-02 \n", " 5 -0.23942 -0.23942 1.441e-02 \n", " 6 -0.23937 -0.23937 4.263e-03 \n", " 7 -0.23936 -0.23936 1.218e-03 \n", " 8 -0.23935 -0.23935 3.271e-04 \n", " 9 -0.23935 -0.23935 7.760e-05 \n", " 10 -0.23935 -0.23935 1.314e-05 \n", " 11 -0.23935 -0.23935 8.375e-07 \n", " 12 -0.23935 -0.23935 2.442e-06 \n", " 13 -0.23935 -0.23935 1.718e-06 \n", " 14 -0.23935 -0.23935 9.537e-07 \n", " 15 -0.23935 -0.23935 4.791e-07 \n", " 16 -0.23935 -0.23935 2.283e-07 \n", " 17 -0.23935 -0.23935 1.053e-07 \n", " 18 -0.23935 -0.23935 4.763e-08 \n", " 19 -0.23935 -0.23935 2.124e-08 \n", " 20 -0.23935 -0.23935 9.382e-09 \n", " Total Energy \n", "\n", " __________________ \n", "\n", "Iteration A B res \n", "\n", "_______________________________________________________\n", "\n", " 1 -0.18430 -0.18430 1.000e+00 \n", " 2 -0.20024 -0.20024 1.459e-01 \n", " 3 -0.20784 -0.20784 5.906e-02 \n", " 4 -0.21080 -0.21080 2.194e-02 \n", " 5 -0.21192 -0.21192 8.064e-03 \n", " 6 -0.21235 -0.21235 2.963e-03 \n", " 7 -0.21251 -0.21251 1.089e-03 \n", " 8 -0.21258 -0.21258 4.001e-04 \n", " 9 -0.21260 -0.21260 1.470e-04 \n", " 10 -0.21261 -0.21261 5.400e-05 \n", " 11 -0.21261 -0.21261 1.984e-05 \n", " 12 -0.21261 -0.21261 7.296e-06 \n" ] } ], "source": [ "a = 2/2\n", "Za, Zb = 1,1\n", "pol = 2\n", "\n", "#Fragment a electrons [alpha, beta]\n", "Nmo_a = [[1,0]]; Nmo_A = [[1,0]] #Number of molecular orbitals to calculate\n", "N_a = [[1,0]]; N_A = [[0,0]]\n", "nu_a = 0.5\n", "\n", "#Fragment b electrons\n", "Nmo_b = [[1,0]]; Nmo_B = [[1,0]]\n", "N_b = [[1,0]]; N_B = [[0,0]] \n", "nu_b = 0.5\n", "\n", "#Molecular elctron configuration\n", "Nmo_m = [[1,0]]\n", "N_m = [[1,0]]\n", "\n", "#Set up grid\n", "NP = 7\n", "NM = [4,4]\n", "L = np.arccosh(10/a)\n", "loc = np.array(range(-4,5)) #Stencil outline\n", "grid = Psgrid(NP, NM, a, L, loc)\n", "grid.initialize()\n", "\n", "\n", "part = Partition(grid, Za, Zb, pol, np.concatenate((Nmo_a, Nmo_A)), np.concatenate((N_a, N_A)), nu_a, \n", " np.concatenate((Nmo_b, Nmo_B)), np.concatenate((N_b, N_B)), nu_b, { \"AB_SYM\" : True,\n", " \"interaction_type\" : \"dft\", \n", " \"kinetic_part_type\" : \"libxcke\",\n", " \"hxc_part_type\" : \"overlap_hxc\",\n", " \"k_family\" : \"gga\", \n", " \"ke_func_id\" : 500,\n", " })\n", "\n", "#Setup inverter object\n", "mol_solver = Pssolver(grid, Nmo_m, N_m)\n", "part.inverter = Inverter(grid, mol_solver, {\"AB_SYM\" : True,\n", " \"ENS_SPIN_SYM\" : False, \n", " \"use_iterative\" : False,\n", " \"invert_type\" : \"wuyang\",\n", " \"disp\" : True, \n", " })\n", "\n", "#Isolated Fragments\n", "part.optPartition.isolated = True\n", "part.scf({\"disp\" : True,\n", " \"alpha\" : [0.6],\n", " \"e_tol\" : 1e-8})\n", "\n", "#Interacting fragments under vp\n", "part.optPartition.isolated = False\n", "part.scf({\"disp\" : True,\n", " \"alpha\" : [0.6],\n", " \"max_iter\" : 200,\n", " \"e_tol\" : 1e-5,\n", " \"iterative\" : False,\n", " \"continuing\" : True})" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'Ea': -0.21261391666219603,\n", " 'Eb': -0.21261391666219603,\n", " 'Ef': -0.42522783332439207,\n", " 'Tsf': 0.6419012008412587,\n", " 'Eksf': array([[-0.79224848, 0. ]]),\n", " 'Enucf': -1.0955758128947057,\n", " 'Exf': -0.3090971334277098,\n", " 'Ecf': -0.023736206995989655,\n", " 'Ehf': 0.36128011915275443,\n", " 'Vhxcf': 0.28330575478424713,\n", " 'Ep': -0.6540096116762366,\n", " 'Ep_pot': -0.5689834260754593,\n", " 'Ep_kin': -0.07871945379408951,\n", " 'Ep_hxc': -0.006306731806687867,\n", " 'Et': -1.0792374450006288,\n", " 'Vnn': 0.5,\n", " 'E': -0.5792374450006288,\n", " 'evals_a': array([], dtype=float64),\n", " 'evals_b': array([], dtype=float64),\n", " 'S': 0.36349421310139707,\n", " 'F': 0.6961051543833872,\n", " 'Ehcor': 0.0,\n", " 'Ep_h': -0.03942091105271872,\n", " 'Ep_x': 0.02948195670208792,\n", " 'Ep_c': 0.0008789269007918529}" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "vars(part.E)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" } }, "nbformat": 4, "nbformat_minor": 4 }