Beryllium LDAΒΆ
[1]:
import numpy as np
from CADMium import Psgrid
from CADMium import Kohnsham
#Distance of the nucley from grid center
a = 1.0
#Nuclear charges on centers AB
Za = 4
Zb = 0
#Set polaization. 1 Unpolarized, 2 Polarized
pol = 1
Nmo = [[2]]
N = [[4]]
optKS = {
"interaction_type" : "dft",
"SYM" : False,
"FRACTIONAL" : True,
}
#Grid Options
NP = 7 #Number of points per block
NM = [10,10] #Number of blocks [angular, radial]
L = np.arccosh(15./a) #Maximum radial coordinate value
loc = np.array(range(-4,5)) #Non inclusive on upper bound
#Create and initialize grid object
grid = Psgrid(NP, NM, a, L, loc)
grid.initialize()
#Kohn Sham object
KS = Kohnsham(grid, Za, Zb, pol, Nmo, N, optKS)
KS.scf()
print(f" Total Energy: {KS.E.E}")
iter Total Energy HOMO Eigenvalue Res
-----------------------------------------------------------
1 -17.52412 -2.50572e-02 +1.00000e+00
2 -15.40680 -1.79335e-01 +1.37428e-01
3 -14.74245 -2.07728e-01 +4.50636e-02
4 -14.53904 -2.11670e-01 +1.39912e-02
5 -14.47292 -2.10250e-01 +4.56819e-03
6 -14.45718 -2.10086e-01 +1.37112e-03
7 -14.44591 -2.07539e-01 +8.23717e-04
8 -14.44550 -2.06687e-01 +4.47611e-04
9 -14.44574 -2.06240e-01 +2.38841e-04
10 -14.44601 -2.06010e-01 +1.25535e-04
11 -14.44620 -2.05892e-01 +6.52941e-05
12 -14.44632 -2.05832e-01 +3.36878e-05
13 -14.44639 -2.05801e-01 +1.72731e-05
14 -14.44643 -2.05785e-01 +8.81403e-06
Total Energy: -14.446430904094559